Liquidity Traps
Gesell’s Solution

Willem H. Buiter
Chief Economist and Special Counsellor to the President, European Bank for Reconstruction and Development, NBER, and CEPR and CEP.

Nikolaos Panigirtzoglou
Bank of England

31 March, 1999
This revision, 31 May 2001

© Willem H. Buiter and Nikolaos Panigirtzoglou, 1999

** The views and opinions expressed are those of the authors. They do not necessarily reflect the views and opinions of the European Bank for Reconstruction and Development or of the Bank of England. We would like to thank Olivier Blanchard, Alec Chrystal, DeAnne Julius, Nobu Kiyotaki, David Laidler and Ronald McKinnon for helpful discussions on the subject. Special thanks are due to Anne Sibert for key technical assistance in Section II of the paper. We are also very much indebted to Ian Plenderleith, John Rippon and Rupert Thorne, for educating us on the subject of bearer bonds, and to Jenny Salvage and Nick Hanchard for assistance with the Figures. Finally we would like C.K. Folkertsma and other participants in the Seminar in Honour of Martin Fase, on 26 March 2001 at the Nederlandsche Bank, Amsterdam, for breathing life back into this paper.
Abstract

An economy is in a liquidity trap when monetary policy cannot influence either real or nominal variables of interest. A necessary condition for this is that the short nominal interest rate is constrained by its lower bound, typically zero. The paper develops a small analytical model to show how an economy can get into a liquidity trap, how it can avoid getting into one and how it can get out.

To avoid the risk of falling into a liquidity trap, or to escape from one, the authorities can remove the zero nominal interest rate floor, by adopting an augmented monetary rule that systematically keeps the own nominal interest rate on currency below the nominal interest rate on non-monetary instruments. This involves paying interest, negative or positive, on certain government 'bearer bonds' -- coin and currency, that is, 'taxing money', as advocated by Gesell. There are likely to be significant shoe leather costs associated with any scheme to tax currency.

Willem H. Buiter, European Bank for Reconstruction and Development, One Exchange Square, London EC2A 2JN, UK.
Tel: #44-20-73386805
Fax: #44-20-73386110/111
E-mail (office): buiterw@ebrd.com
E-mail (home): willembuiter@netscapeonline.co.uk
Home page: http://www.nber.org/wbuiter/

Tel: #44-20-7601 5440
Fax: #44-20-7601 5953
E-mail: nikolaos.panigirtzoglou@bankofengland.co.uk

Key words: Liquidity trap; Gesell, stamp scrip, inflation targeting; multiple equilibria.
(I) Introduction

The liquidity trap used to be a standard topic in macro textbooks, but disappeared in the 1970s. Because of recent developments in Japan, liquidity traps are a hot topic again. The economy is said to be in a liquidity trap when the ability to use monetary policy to stimulate demand has vanished. The conditions that have to be satisfied for monetary policy to fail to affect both real and nominal variables depend on one’s view on the monetary transmission mechanism. A necessary condition for monetary policy ineffectiveness is that monetary policy cannot affect the joint distribution of real and nominal rates of return on financial and real assets.\footnote{In an open economy, the relevant rates of return would include the expected rate of depreciation of the exchange rate. If, say, domestic nominal interest rates are linked to world interest rates through an uncovered interest parity condition, monetary policy will still be ineffective whenever the demand for money becomes infinitely interest-sensitive. When international interest rate differentials can be influenced by changes in the relative supplies of non-monetary government debt instruments denominated in different currencies, there is a further monetary transmission channel.} In very simple closed economy IS-LM-type models, where there is but one rate of return – a nominal interest rate of unspecified maturity - monetary policy in powerless when an increase in the nominal money stock cannot reduce this short nominal rate. In models with a more extended menu of financial and real assets, for monetary policy to be powerless, the yields on all non-monetary assets (short and long maturity, private and public, financial and real) must be at their lower bounds, not just the short nominal interest rate. With portfolio holders indifferent a regards the composition of their financial wealth between money and all non-money assets, changes in the supply of money cannot affect the spreads between money and non-money assets. When, as is institutionally more relevant, the short nominal interest rate is taken to be the monetary instrument, rather than some monetary aggregate, the argument is not changed in any essential way. When monetary policy also works through channels other than rates of return (say, through the availability as well as the
cost of credit, or through the exchange rate), a liquidity trap is only operative if these additional liquidity, credit or exchange rate channels of monetary transmission too are blocked.²

The textbook treatment of liquidity traps, based on Hicks's [1936] interpretation of Keynes [1936], involves the assumption that the opportunity cost of holding money is a long nominal interest rate, and that the demand for money becomes infinitely sensitive to the current value of this long nominal yield because of regressive (what we now call ‘mean reverting’) expectations about the future behaviour of the long nominal yield (see e.g. Tobin [1958] and Laidler [1993]). In most modern theories, the short (riskless) nominal interest rate on government debt is the opportunity cost of holding currency. The nominal yield on short government debt is then related to yields on other assets through equilibrium asset pricing relationships such as the expectations theory of the term structure of interest rates, the CAPM model or other portfolio balance models.

The modern argument assumes explicitly (and the traditional theories assumed implicitly) that the pecuniary own rate of return on money was zero, an appropriate assumption for coin and currency, although not for the liabilities of private deposit-taking institutions that make up most of the broader monetary aggregates, which now typically have positive nominal returns. With the own rate of return on currency administratively fixed at zero, a floor for the spread between the non-monetary and monetary claims becomes a floor for the nominal yields on non-monetary financial instruments.

² A ‘helicopter drop’ of money will, unlike money injected through open market purchases, have a wealth effect on private consumption, for a given distribution of rates of return. Since the essence of this part of the monetary transmission mechanism is a transfer of wealth between the public and private sectors, we consider it to be fiscal rather than monetary policy. In the rest of this paper, monetary policy is interpreted as pertaining only to the composition of the government’s financial liabilities between monetary and non-monetary claims. The magnitude of the government’s aggregate stock of financial liabilities is the province of intertemporal fiscal policy.
In Section II of the paper, we develop a small analytical model of a closed economy in which, under a conventional Taylor rule for the nominal interest rate, a liquidity trap can exist. We show how a simple augmentation of the Taylor rule can eliminate liquidity trap equilibria. The augmented rule may involve paying (negative as well as positive) interest on currency. The practicalities of paying interest on currency are reviewed in Section III.

Even in the simple analytical model of a liquidity trap developed in Section II, monetary policy is powerless only if it cannot affect nominal yields at any maturity. While the demand for narrow money or base money in that model depends on just one opportunity cost variable: the current short nominal interest rate, aggregate demand is affected by current and anticipated future short rates. The economy is in a liquidity trap only if the entire yield curve is flat at a zero level (see also Orphanides and Wieland [1998]). In an open economy extension of this model, the same conclusion would apply if domestic and foreign nominal interest rates were linked through an uncovered interest parity (UIP) condition. If domestic and foreign currency denominated non-monetary securities were imperfect substitutes, monetary policy might work through the exchange rate channel, even with the entire domestic yield curve flat at zero.

This liquidity trap used to be treated, in the mainstream accounts of the monetary transmission mechanism, as a theoretical curiosum without practical relevance. The revival of interest in the liquidity trap is not surprising.

First, Japan is in a protracted economic slump. Short nominal interest rates there are near zero. Zero is the absolute nominal interest rate floor in Japan because yen notes and coin bear a zero nominal interest rate. Of course, the yields on longer-maturity government debt instruments remain positive (albeit at historically low levels), and the nominal yields on a

3 See e.g. Romer [1996], which covers the topic as half of an exercise at the end of the chapter 5, "Traditional Keynesian Theories of Fluctuations".
variety of private and public financial and real assets also remain positive. While the strict conditions for a liquidity trap to be operative are therefore not satisfied, monetary policy in Japan currently appears to have a rather limited effect on aggregate demand. A number of observers have concluded that there is a liquidity trap at work (see e.g. Krugman [1998a,b,c,d; 1999], Ito [1998], McKinnon and Ohno [1999] and Svensson [2000]); for a view that liquidity traps are unlikely to pose a problem, see Meltzer [1999] and Hondroyiannis, Swamy and Tavlas [2000].

Second, HICP inflation in Euroland averaged 1.1 percent per annum during 1999. The ECB’s repo rate reached a trough of 2.5 percent during April 1999. At the time, this raised the question as to whether a margin of two hundred and fifty basis points provides enough insurance against a slump in aggregate demand. Demand could weaken to such an extent that a cut in the short nominal rate of more than two hundred and fifty points would be required to boost aggregate demand sufficiently.

For virtually all monetary authorities in developed market economies, the monetary instrument is a short nominal interest rate. Monetary policy impacts aggregate demand primarily through its effect on real interest rates, short and long. The transmission of monetary policy through other real asset prices, including the real exchange rate, depends on

4 Hondroyiannis, Swamy and Tavlas [2000] argue that because their empirical study suggests that the interest rate elasticity of money demand is lower at lower rates of interest (and has declined in recent years), Japan cannot be in a liquidity trap. This is a non-sequitur. If all interest rates are at the zero floor, monetary policy is ineffective, no matter how low the interest sensitivity of money demand.

5 The argument could be recast in terms of the monetary authority using some monetary aggregate as the instrument, with the short nominal interest rate on risk-free non-monetary financial claims treated as endogenous. Taking the short nominal rate as the instrument has two advantages. First, the exposition in simpler. Second, it is what central banks actually do. Changes in reserve requirements, open market operations etc. are best viewed as ways of changing the interest rate. In an open economy, the other institutionally relevant instrument of monetary policy is the nominal exchange rate. When capital mobility is limited, the short nominal interest rate and the nominal exchange rate both can be instruments of policy, at any rate in the short run.
the ability of the monetary authorities to influence real interest rates. For the monetary
authority to affect real demand, changes in nominal interest rates have to be translated, at
least temporarily, into changes in real interest rates. In a moderate or low-inflation
environment, inflation and inflation expectations tend to move only gradually and sluggishly.
This Keynesian feature of the economy gives monetary policy a temporary handle on the real
economy.

If short nominal interest rates cannot fall any further, short real rates can only be
pushed down through a rise in the expected rate of inflation. If the price stability gospel has
been widely internalised by market participants, expected inflation is unlikely to rise to
produce the required cut in real rates.

Once an economy is in such a situation, it is not possible to get out of it using the
conventional monetary policy instruments - changes in the short nominal interest rates.
Inflation expectations are not a policy instrument. Why would inflation expectations rise
when monetary policy cannot stimulate demand?

Of course, in a liquidity trap, expansionary fiscal policy, or any other exogenous shock
to aggregate demand, is supposed to be at its most effective. There are, however, conditions
under which fiscal policy cannot be used to stimulate aggregate demand. Debt-financed
lump-sum tax cuts could fail to stimulate aggregate demand if there is Ricardian equivalence
or debt neutrality. Alternatively, the government's creditworthiness may be so impaired that it
cannot borrow. Finally, there could be external, Maastricht Treaty or Stability and Growth
Pact-like external constraints on a government's ability to use deficit financing.

If Ricardian equivalence holds, a temporary increase in exhaustive public spending
will, even with a balanced budget, and in virtually any model of the economy, boosts
aggregate demand. For this fiscal policy channel to be ineffective also, exhaustive public
spending must be a direct perfect substitute for exhaustive private spending, say because
public consumption is a perfect substitute for private consumption in private utility functions, and public investment is a perfect substitute for private investment in private production functions. Recent theoretical analyses of liquidity traps include Wolman [1998], Bui ter and Panigirtzoglou [1999], McCallum [2000, 2001], Christiano [2000], Porter [1999], and Benhabib, Schmitt-Grohé and Uribe [1999a,b]. Recent empirical investigations of the issue include Fuhrer and Madigan [1997], Bui ter and Panigirtzoglou [1999], Johnson, Small and Tryon [1999], Clouse, Henderson, Orphanides, Small and Tinsley [1999], Iwata and Wu [2001].

(II) A Simple Model of the Liquidity Trap

We model a simple, closed endowment economy with a single perishable commodity that can be consumed privately or publicly.

Households

A representative infinite-lived, competitive consumer maximises for all $t \geq 0$ the utility functional given in (1) subject to his instantaneous flow budget identity (2), solvency constraint (3) and his initial financial wealth. We use the simplest money-in-the-direct-utility-function approach to motivate a demand for money despite it being dominated as a store of value. Instantaneous felicity therefore depends on consumption and real money balances. We define the following notation; c is real private consumption, y is real output, τ is real (lump-sum taxes), M is the nominal stock of base money (currency), B is the nominal stock of short (strictly zero maturity) non-monetary debt, i is the instantaneous risk-free nominal interest rate on non-monetary debt, i_M is the instantaneous risk-free nominal interest rate on money (or the own rate on money), p is the price level in terms of money, a is

6See Buiter [1977].
the real stock of private financial wealth, m is the stock of real currency and b the stock of
real non-monetary debt.

\[
\int_{t}^{\infty} e^{-\delta(v-t)} \left[\frac{1}{1+\eta} \ln c(v) + \frac{\eta}{1+\eta} \ln m(v) \right] dv
\]

\[\eta > 0\]

(1)

\[\delta > 0\]

\[\dot{M} + \dot{B} \equiv p(y - \tau - c) + iB + i_M M\]

(2)

\[c \geq 0; M \geq 0\]

\[\lim_{y \to \infty} e^{-\int_{y}^{\infty} [M(v) + B(v)]} \geq 0\]

(3)

\[M(0) + B(0) = A(0)\]

(4)

By definition,

\[a \equiv \frac{M + B}{P}\]

(5)

The household budget identity (2) can be rewritten as follows

\[\dot{a} \equiv ra + y - \tau - c + (i_M - i)M\]

(6)

where r, the instantaneous real rate of interest on non-monetary assets, is defined by

\[r \equiv i - \pi\]

(7)

and $\pi \equiv \frac{\dot{P}}{P}$ is the instantaneous rate of inflation.

The household solvency constraint can now be rewritten as

\[\lim_{v \to \infty} e^{-\int_{0}^{v} r(u) du} a(v) \geq 0\]

(8)

and the intertemporal budget constraint for the household sector can be rewritten as:
The first-order conditions for an optimum imply that the solvency constraint will hold with equality. Also,

$$\dot{c} = (r - \delta) c$$

and for $i \geq i_M$,

$$m = \left(\frac{\eta}{i - i_M} \right) c$$

If $i < i_M$, currency would dominate non-monetary financial assets ('bonds') as a store of value. Households would wish to take infinite long positions in money, financed by infinite short positions in non-monetary securities. The rate of return on the portfolio would be infinite. This cannot be an equilibrium.

If $i = i_d$, currency and bonds are perfect substitutes as stores of value. With flexible prices, this will, from the point of view of the household’s utility functional, be the first-best equilibrium, characterised by satiation in real money balances. With the logarithmic utility function, satiation occurs only when the stock of money is infinite (relative to the finite consumption level). Provided the authorities provide government money and absorb private bonds in the right (infinite) amounts, this can be an equilibrium.

There is a continuum of identical consumers whose aggregate measure is normalised to 1. The individual relationships derived in this section therefore also characterise the aggregate behaviour of the consumers.

Government

The budget identity of the consolidated general government and central bank is given in (12). The level of real public consumption is denoted $g \geq 0$.
\[\dot{M} + \dot{B} \equiv iB + i_M M + p(g - \tau) \quad (12) \]

Again, the initial nominal value of the government’s financial liabilities is predetermined, \(M(0) + B(0) = \overline{A}(0) \).

This budget identity can be rewritten as

\[\dot{a} \equiv ra + g - \tau + (i_M - i)m \quad (13) \]

The government solvency constraint is

\[\lim_{v \to \infty} e^{-\int^v_{t} r(u) du} a(v) \leq 0 \quad (14) \]

Equations (13) and (14) imply the intertemporal government budget constraint:

\[\int_t^\infty e^{-\int^v_{t} r(u) du} \left[\tau(v) + [i(v) - i_M(v)]m(v) - g(v) \right] dv \geq a(t) \quad (15) \]

Government consumption spending is exogenous. To ensure that public consumption spending does not exceed total available capacity resources, \(\overline{y} > 0 \), we therefore have to impose \(g < \overline{y} \). With a representative consumer, this model will exhibit debt neutrality or Ricardian equivalence. Without loss of generality, we therefore assume that lump-sum taxes are continuously adjusted to keep the nominal stock of public debt (monetary and non-monetary) constant, \(\dot{A}(t) = 0 \), \(t \geq 0 \), that is,

\[\tau = g + ia + (i_M - i)m \]

\[= g + i \frac{\overline{A}(0)}{p} + (i_M - i)m \quad (16) \]

Monetary policy

The monetary authorities peg the nominal interest rate on currency exogenously:

\[i_M = \overline{i}_M \]

We assume in what follows that the other monetary instrument is the short nominal interest rate on bonds, rather than the level or the growth rate of the nominal money stock.
There are two reasons for this. First, it simplifies the exposition. Second, it is how monetary policy is actually conducted in developed market economies.

The monetary authorities are assumed to follow a simplified Taylor rule for the short nominal interest rate on non-monetary financial claims, as long as this does not put the short nominal bond rate below the interest rate on currency. A standard Taylor rule for the short nominal bond rate which restricts the short nominal bond rate not to be below the short nominal rate on currency, would be

\[
i = \bar{i} + \gamma \pi + e_y \quad \text{if} \quad \bar{i} + \gamma \pi + e_y \geq i_M
\]

\[
i = i_M \quad \text{if} \quad \bar{i} + \gamma \pi + e_y < i_M
\]

For our purposes, all that matters is the responsiveness of the short bond rate to the inflation rate. We therefore omit feedback from the level of real GDP (or from the output gap) in what follows. The short nominal interest rate rule then simplifies to

\[
i = \bar{i} + \gamma \pi \quad \text{if} \quad \bar{i} + \gamma \pi \geq i_M
\]

\[
i = i_M \quad \text{if} \quad \bar{i} + \gamma \pi < i_M
\]

(17)

The Taylor rule is sometimes justified as a simple, ad-hoc rule consistent with inflation targeting. If the target rate of inflation is constant at \(\pi^* \), and equal to the steady-state rate of inflation achieved under the rule, the intercept in the Taylor rule, \(\bar{\pi} \), can be given the following interpretation

\[
\bar{\pi} = \delta + (1-\gamma)\pi^*
\]

(18)

This allows us to write the Taylor rule as

\[
i = \delta + \pi^* + \gamma(\pi - \pi^*)
\]

(19)

or

\[
r = \delta + (\gamma -1)(\pi - \pi^*)
\]

(20)
For reasons of space, only a ‘Keynesian’ variant of the model, characterised by nominal price rigidities, is considered here. In this Keynesian variant, output is demand-determined, the price level, \(p \), and the rate of inflation, \(\pi \), are assumed to be predetermined, and the rate of inflation adjusts to the gap between actual and capacity output through the simplest kind of accelerationist Phillips curve.

\[
c + g = y
\] \(\tag{21} \)

\[
\dot{\pi} = \beta(y - \overline{y})
\] \(\tag{22} \)

\(\beta > 0 \)

For simplicity, we assume capacity output to be exogenous and constant.

The behaviour of the economy can be summarised in two first-order differential equations in the non-predetermined state variable \(c \) and the predetermined state variable \(\pi \). The equation governing the behaviour of private consumption growth switches, however, when the floor on the short nominal interest rate becomes binding (when the economy is at the floor \((i_M) \) for the short nominal interest rate).

\[
\dot{\pi} = \beta(c + g - \overline{y})
\] \(\tag{23} \)

\[
\dot{c} = \begin{cases} [\overline{T} + (\gamma - 1)\pi - \delta]c & \text{if } \overline{T} + \gamma\pi \geq i_M \\ [i_M - \pi - \delta]c & \text{if } \overline{T} + \gamma\pi < i_M \end{cases}
\] \(\tag{24} \)

When the short nominal interest rate floor is not a binding constraint (we shall refer to this as the ‘normal’ case), saddlepoint stability for the dynamic system requires \(\gamma > 1 \). A higher rate of inflation leads, through the policy reaction function, to a larger increase in the short nominal bond rate so as to raise the short real rate. As shown in Figure 1a, the \(\dot{c} = 0 \)

\(^7\) See Buiter and Panigirtzoglou [1999] for a longer version of the paper which includes an analysis of the liquidity trap with flexible prices.
locus in the *normal region* (denoted \(\dot{c} = 0 \)), is vertical in a phase diagram with \(\pi \) on the horizontal axis and \(c \) on the vertical axis, at \(\pi = \frac{T - \delta}{1 - \gamma} = \pi^* \).\(^8\)

Figure 1a,b here

When the short nominal interest rate on bonds is at its floor (henceforth in the ‘floor region’), the \(\dot{c} = 0 \) locus (denoted \((\dot{c} = 0)_F\)) is vertical at \(\pi = i_m - \delta \). We first consider the case where \(i_m - \delta < 0 \) and \(\pi^* \geq 0 \). The first of these assumptions is satisfied if the monetary authorities follow the current institutional practice of not paying interest on cash \((i_m = 0)\). The second assumption too is descriptively realistic. With these assumptions the locus \((\dot{c} = 0)_F\) is to the left of \((\dot{c} = 0)_N\). This is the case considered in Figure 1a.

As long as the rate of inflation exceeds \(\frac{i_m - T}{\gamma} \), the short nominal bond rate exceeds the nominal interest rate on currency, and the economy is in the normal region. For inflation rates at or below \(\frac{i_m - T}{\gamma} \), the economy is in the floor region. The switch from the normal to the floor region occurs at \(\pi = \frac{i_m - T}{\gamma} = i_m - \delta + \left(\frac{\gamma - 1}{\gamma}\right) \pi^* \). We shall refer to the boundary of the normal and the floor regions as the \(NF \) locus in Figure 1a,b,c. When \(i_m - \delta < 0 \) and \(\pi^* \geq 0 \), the switching value of \(\pi \) lies between the two \(\dot{c} = 0 \) loci. This assumption is reflected in Figure 1a. The \(NF \) locus could either be to the left or to the right of the \(c \) axis.

There are two steady states - the normal steady state and the liquidity trap steady state - for the nominal bond rate and the rate of inflation. The normal steady state values are:

\[\bar{c} = \bar{y} - g \]
\[\bar{r} = \delta \]

\(^8\)Here and in what follows we ignore the \(c = 0 \) segment of the \(c \) isocline.
\[\pi^N = \frac{\delta - \bar{\pi}}{\gamma - 1} = \pi^* \quad \text{(Normal case)} \]

or

\[\pi^L = \bar{i}_M - \delta \quad \text{(Liquidity trap)} \]

\[i^N = \frac{\gamma \delta - \bar{\pi}}{\gamma - 1} > \pi^* \quad \text{(Normal case)} \]

or

\[i^L = \bar{i}_M \quad \text{(Liquidity trap)} \]

Note that steady state household utility is higher in the liquidity trap than in the normal case. Consumption is the same in both cases and in the liquidity trap steady state households are satiated with real money balances. The government’s target rate of inflation, \(\pi^* \), implicit in the Taylor rule, cannot (unless \(\pi^* = \bar{i}_M - \delta \), a case considered below) be rationalised as the steady state rate of inflation that maximises steady-state household utility.

The linear approximation of the normal dynamics at the normal steady state \((c = \bar{c} = \bar{y} - g \text{ and } \pi = \bar{\pi} = \frac{\delta - \bar{\pi}}{\gamma - 1} = \pi^*)\) is

\[
\begin{bmatrix}
\hat{c} \\
\hat{\pi}
\end{bmatrix}
\approx
\begin{bmatrix}
0 & (\gamma - 1)(\bar{y} - g) \\
\beta & 0
\end{bmatrix}
\begin{bmatrix}
c - \bar{c} \\
\pi - \bar{\pi}
\end{bmatrix}
\]

The determinant of the state matrix is \((1 - \gamma)(\bar{y} - g)\beta < 0\) if \(\gamma > 1\). The two characteristic roots are \(\pm \sqrt{\beta(\gamma - 1)(\bar{y} - g)}\). Since \(\gamma > 1\), the equilibrium configuration in the neighbourhood of the normal steady state \((\Omega^N)\) is a saddlepoint.

The linear approximation of the floor dynamics at the liquidity trap steady state \(\Omega^L\) (with \(c = \bar{c} = \bar{y} - g \text{ and } \pi = \bar{\pi} = i_M - \delta \)) is

\[
\begin{bmatrix}
\hat{c} \\
\hat{\pi}
\end{bmatrix}
\approx
\begin{bmatrix}
0 & g - \bar{\pi} \\
\beta & 0
\end{bmatrix}
\begin{bmatrix}
c - \bar{c} \\
\pi - \bar{\pi}
\end{bmatrix}
\]
The determinant of the state matrix is \((\bar{y} - g)\beta > 0\). The two characteristic roots are \(\pm \sqrt{\beta(g - \bar{y})}\). The linearised dynamic system has two complex conjugate roots with zero real parts or pure imaginary roots. The equilibrium configuration near the liquidity trap steady state \((\Omega^L\) in Figure 1a) is neutral and cyclical.

It is also possible to characterise the global dynamics of the model.

From (23) and the normal version of (24) it follows that the slope of the integral curves in \(c - \pi\) space is given by

\[
\frac{dc}{d\pi} = \frac{[\bar{t} - \delta + (\gamma - 1)\pi]c}{\beta(c + g - \bar{y})}
\]

This can be rewritten as

\[
\beta(1 + \frac{g - \bar{y}}{c}) dc = [\bar{t} - \delta + (\gamma - 1)\pi]d\pi
\]

As this is separable in \(c\) and \(\pi\), it can be integrated to yield

\[
\beta[c + (g - \bar{y}) \ln c] = (\bar{t} - \delta)\pi + \frac{(\gamma - 1)}{2} \pi^2 + k
\]

where \(k\) is an arbitrary constant.

Provided \((\bar{t} - \delta)^2 + 2(1 - \gamma)(k - \beta[c + (g - \bar{y}) \ln c]) \geq 0\), the integral curves in the normal case \((c > 0, \pi > \frac{i_M - \bar{t}}{\gamma})\) are given by:

\[
\pi = \frac{\bar{t} - \delta \pm \sqrt{(\bar{t} - \delta)^2 + 2(1 - \gamma)(k - \beta[c + (g - \bar{y}) \ln c])}}{1 - \gamma}
\]

The integral curves for the liquidity trap case \((c > 0, \pi \leq \frac{i_M - \bar{t}}{\gamma})\) are given by

\[
\pi = i_M - \delta \pm \sqrt{(i_M - \delta)^2 + 2(k - \beta[c + (g - \bar{y}) \ln c])}
\]
The liquidity trap configuration is a center. Some neighbourhood of this steady state is completely filled by closed integral curves, each containing the steady state in its interior.

The left-hand panel of Figure 1a (to the left of the NF locus) shows the behaviour of the system when the dynamics are government by the floor region, the right-hand panel of Figure 1a (to the right of the NF curve) shows the behaviour of the system when the dynamics are governed by the normal region. On the boundary of the two regions (when \(\pi = \frac{i_{M} - \bar{\gamma}}{\gamma} \)) and at a given level of consumption, the slope of the integral curve in the normal case, \(\frac{dc}{d\pi} \), is the same as the slope of the integral curve in the liquidity trap case \(\frac{dc}{d\pi} \). This means that the centre orbits of the liquidity trap region and the saddlepoint solution trajectories of the normal region merge smoothly into each other at the boundary between the two regions. Figure 1a shows the ‘merged’, global solution trajectories spanning the two regions. The stable branch SS’ and the unstable branch UU’ through the normal steady state merge on the boundary NF into an orbit drawn with reference to the liquidity trap steady state. The lowest inflation rate achieved on this orbit, \(\pi \), is the lowest starting value for the inflation rate for which well-behaved solutions are defined. Any path starting below \(\pi \) will eventually lead to an explosive solution, with inflation and consumption rising without bound.

9 Anne Sibert provided the mathematical solution for the behaviour of the system in the liquidity trap region.

10 It is easily checked that \(\frac{dc}{d\pi} \bigg|_{x_{c} \gamma = \gamma} = \frac{dc}{d\pi} \bigg|_{x_{c} \gamma = \gamma} = \frac{\left(\frac{\gamma - 1}{\gamma} i_{M} + \frac{1}{\gamma} \bar{\gamma} - \delta \right) c}{\beta (c + g - \bar{\gamma})} \).

11 The accelerationist Phillips curve does not bound actual output \(y \), which is demand-determined and can, taken literally, exceed capacity output, \(\bar{y} \), without bound. A richer model would rule out such explosive real output dynamics.
To understand the possible multiplicity of non-explosive solutions that may occur in
this model, two properties of admissible solutions deserve emphasising. First, explosively
divergent solutions are ruled out, if non-explosive solutions exist. Second, the inflation rate
is a predetermined state variable while consumption is non-predetermined. This means that
discontinuous changes in the rate of inflation are never allowed and that discontinuous
changes in the level of private consumption are permitted only at instants that news arrives.
In what follows, news arrives only once, at the initial date.

For all initial inflation rates below π, there only exist explosive solutions. EE’ in
Figure 1a is one such explosive solution. For all initial rates of inflation less than $\frac{a_m - \bar{I}}{\gamma}$ (to
the left of the NF locus) but above π, there exists a continuum of solution trajectories that
always stay completely within the floor region. LL’ is one such solution. Nominal interest
rates at all maturities will be zero. For any initial rate of inflation below the normal steady
state rate of inflation (π^*) but above $\frac{a_m - \bar{I}}{\gamma}$, there will be a continuum of possible solution
orbits, all of which are at partly in the floor region. The instantaneous short nominal rate will
be zero on that part of the solution curve LL’ that lies to the left of $\frac{a_m - \bar{I}}{\gamma}$, but there will be
longer maturity nominal interest rates that are positive. When the solution trajectory is to the
right of $\frac{a_m - \bar{I}}{\gamma}$, even the instantaneous nominal interest rate will be positive.

Figure 1a shows that for any initial rate of inflation below the target level (the normal
steady state level π^*) but above π, there also exists a unique orbit (and two values of c) that
will take the system to the normal steady state. That is the solution trajectory given to the

12 We assume for concreteness that $i_m = 0$ here.
right of the \(NF \) locus (and to the left of \(\pi^\ast \)) by the stable branch \(SS' \) and the unstable branch \(UU' \) drawn with reference to the normal steady state \(\Omega^N \), and to the left of the \(NF \) locus by that closed orbit, drawn with reference to the liquidity trap steady state, \(\Omega^L \), that has tangencies to \(SS' \) and \(UU' \) on the \(NF \) locus at \(T \) and \(T' \) respectively. Thus, even if we (rather arbitrarily) restrict admissible solutions to those that converge to the normal steady state, there will be, for any initial rate of inflation below \(\pi^\ast \) and above \(\pi \), two initial values of consumption that are consistent with this requirement. In addition, also exists a continuum of solution orbits like \(LL' \) that cycle, either partly in the normal region and partly in the floor region (like \(LL' \)) or completely in the floor region. These orbits never reach the normal steady state. When the initial rate of inflation equals \(i_m - \delta \), the continuum of solutions for consumption, ranging between \(\varepsilon^H \) and \(\varepsilon^L \) includes the liquidity trap steady state, \(\Omega^L \).

For any initial inflation rate above the normal steady state rate of inflation, \(\pi^\ast \), there is a unique non-explosive solution trajectory. That solution puts consumption on the stable branch through the normal steady state, \(SS' \). There is no non-explosive solution trajectory that moves the system from an initial rate of inflation above \(\pi^\ast \) into the liquidity trap region.

It is interesting to investigate what happens when the target rate of inflation implicit in the Taylor rule, \(\pi^\ast \), equals \(i_m - \delta \), the steady state inflation rule in the liquidity trap case. When the target rate of inflation equals Friedman’s optimum rate of inflation, the configuration shown in Figure 1b occurs. The normal steady state, with its local saddlepoint configuration and the liquidity trap steady state with its local centre configuration coincide. Indeed, \(\pi^H = \pi^\ast = \pi^L = i_m - \delta = \pi \) in this case. Any solution starting from an inflation rate above \(\pi^\ast \) now converges along the stable branch \(SS' \) towards the unique steady state \(\Omega^UL \). Any solution starting from an inflation rate below \(\pi^\ast \) (and therefore also below \(\pi \)) now diverges explosively.
It is not sensible to have parameter configurations where the target rate of inflation implicit in the Taylor rule is below the steady state inflation rate that supports Friedman’s optimum quantity of money. Assume the contrary, i.e. that \(\pi^* < i_M - \delta \). The inflation rate defining the boundary between the normal and the floor regions, \(\pi^{NF} \), say, is given by:

\[
\pi^{NF} = \frac{i_M - \delta + (\gamma - 1)\pi^*}{\gamma}.
\]

With \(\gamma > 1 \) it follows that \(\pi^N = \pi^* < \pi^{NF} < \pi^L = i_M - \delta \). The steady state for the Taylor rule would lie outside the range of inflation rates for which the Taylor rule is defined. In what follows, we only consider parameter configurations supporting the solution trajectories shown in Figure 1a.

Demand shocks and the liquidity trap

We want to consider shocks that can cause the liquidity trap to be sprung, that is, shocks for which the constraint \(i \geq i_M \) can become binding. We consider an economy that is initially in the normal steady state, at \(\Omega_1^N \) in Figure 2, and is hit by an unexpected demand shock or supply shock that lowers current aggregate demand below current capacity output. For concreteness we will consider the unanticipated announcement, at \(t = t_0 \) of an immediate and temporary reduction in public spending, \(g \), which is reversed again at \(t = t_1 > t_0 \).

The consumption function for our model is

\[
c(t) = \frac{\delta}{1 + \eta} \left[\frac{M(t) + B(t)}{P(t)} + \int_t^\infty e^{-\int_t^u (\pi(u) - \pi^*)du} [y(v) - \tau(v)] dv \right]
\] (25)

With the logarithmic utility function, the intertemporal substitution elasticity is unity. The marginal propensity to spend out of comprehensive wealth is \(\frac{\delta}{1 + \eta} \), which is independent of current and anticipated future real interest rates. Comprehensive wealth is the sum of financial wealth \(\frac{M(t) + B(t)}{P(t)} \) and human wealth \(\int_t^\infty e^{-\int_t^u (\pi(u) - \pi^*)du} [y(v) - \tau(v)] dv \). Real
interest rates affect current consumption only because they discount future real after-tax endowments. Monetary policy affects consumption to the extent that changes in current and anticipated future short nominal rates can affect current and anticipated future real discount factors, \(\int_{t_0}^{\infty} e^{-\int_{t}^{\infty} (l(u) - \pi(u))du} \), at any horizon \(v - t \geq 0 \).

An unanticipated immediate and temporary cut in public spending is contractionary in the short run because, although forward-looking Ricardian households realise that lower public spending means a correspondingly lower present discounted value of future taxes, the effect of the temporary public spending cut on household permanent (after-tax) income, and therefore on household consumption, is smaller in magnitude than the spending cut. As long as the public spending cut is in effect therefore (between \(t_0 \) and \(t_1 \)), aggregate demand, \(c + g \), will fall, for a given path of current and expected future real interest rates. Once the public spending cut is reversed (after \(t_1 \)), aggregate demand will rise again. Aggregate demand (for a given path of current and expected future real interest rates) will be larger than it would have been absent the temporary spending cut.

As we shall see, following the contractionary fiscal shock, inflation will be lower along any of the equilibrium solution paths. Because of the Taylor-style interest rate reaction function, which has the short nominal interest rate adjusting more than one-for-one with the inflation rate, the profile of expected future short real rates is actually lower with the public spending cut than without. Future after-tax endowments are therefore discounted at a lower rate, but this is not enough to negate the net negative effect on aggregate demand of the public
spending cuts. Figure 2 represents the behaviour of the system following the public spending shock.

Assume the system starts, before the news arrives, at the normal steady state equilibrium Ω^N_1, with government spending expected to be constant. An unanticipated, immediate, permanent cut in public spending (the case there $t_1 \to \infty$) will result in an immediate transition to the new steady state at Ω^N_2. In the new steady state, the rate of inflation, and all real and nominal interest rates are the same as before. The level of private consumption rises by the same amount as the cut in the level of public consumption. Any initial jump in private consumption above the level corresponding to Ω^N_2 would lead to explosively divergent behaviour and so would any initial jump to a level below Ω^N_2.

When the cut increase in public consumption is not permanent, the transition is as follows. Assume that at the announcement date, t_0, there is unexpected news of an immediate temporary cut in public spending, which is reversed again at $t_1 > t_0$. There is a unique solution that will cause the system to return to the initial, normal steady state, Ω^N_1. This solution involves an immediate discrete jump increase in private consumption to Ω^N_{12}, situated vertically above Ω^N_1 and below Ω^N_2. Note that the rate of inflation, π, is predetermined. From Ω^N_{12}, the system travels along the unstable solution trajectory, drawn with reference to the steady state Ω^N_2, that will cause it to arrive at Ω^N_{13} on the unique stable branch through Ω^N_1, at t_1, the moment the public spending cut is reversed. From then on the system converges to Ω^N_1 along the stable branch through Ω^N_1, labelled S_1S_1'. From t_0 till t_1

\[13\] If instead of the logarithmic instantaneous utility function we had adopted the constant elasticity of marginal utility function with an intertemporal substitution elasticity larger than
there is excess capacity and inflation is falling. From t_i on inflation is rising and there is excess demand.

In addition to this unique solution that converges to the initial normal steady state Ω_i^N, there is a continuum of solutions that puts the system, at t_i, on a closed orbit that will lie partly in the normal and partly in the floor regions. One such solution is shown in Figure 2. At the initial date, t_o, there is a jump in the level of private consumption to a level below Ω_{i2}^N, say Ω_{i2}^L. From Ω_{i2}^L the system travels along a divergent trajectory, drawn with reference to Ω_{i}^N, that will put it on the orbit LL' at t_i. Note that this solution trajectory intersects S_iS_i', the stable branch through Ω_i^N, before it reaches the orbit LL' at $t = t_i$ at the point Ω_{i3}^L. There exists a continuum of possible initial jumps in private consumption, between Ω_{i2}^N and Ω_i^N that will put the economy one of a continuum of closed orbits around the liquidity trap steady state.

Monetary policy actions to avoid or escape a liquidity trap in our model can take various forms. First, a one-off increase in the inflation target, π^*, which under our Taylor rule amounts to a reduction in \bar{T}, the intercept term in the Taylor rule. Second, a one-off reduction in the nominal interest rate on money, i_M. Third, a change in the responsiveness of the nominal interest rate to the rate of inflation, that is, a change in γ. Finally, the adoption of a rule for the nominal interest rate on money that ensures that it will always be below the nominal interest rate on non-monetary assets. Only the last of these measures turns out to eliminate the liquidity trap problem.

An increase in the target rate of inflation shifts the normal steady state horizontally to the right, one-for-one. The NF locus, marking the boundary between the normal and the floor

\[1, \text{the negative effect on consumption would have been reinforced.}\]
regions also shifts to the right, but less than one-for-one. When the actual inflation rate exceeds the target inflation rate, there is only one non-explosively divergent solution trajectory. This is the trajectory that converges to the normal steady state. For any inflation rate below the target inflation rate (and above \(\pi \)), there still exists a solution trajectory that converges to the normal steady state, but there also exists a continuum of solutions that take the form of closed orbits around the liquidity trap steady state. These orbits are partly in the floor region. For any initial inflation rate below \(\pi \), only explosively divergent solutions exist. Raising the target rate of inflation therefore reduces the range of initial inflation rates for which there are non-explosively divergent solutions that do not converge to the normal steady state.

Lowering the nominal interest rate on money leaves the normal steady state (and the dynamics in the normal region) unchanged. It shifts the liquidity trap steady state horizontally to the left, one-for-one, and it also shifts the \(NF \) locus to the left, but less than one-for-one.

Raising \(\gamma \), the responsiveness of the nominal interest rate to the rate of inflation, while leaving the target rate of inflation unchanged (that is, varying \(\tilde{T} \) to leave \(\pi^* = \frac{\delta - \tilde{T}}{\gamma - 1} \) constant) also does not qualitatively affect the behaviour of the system. To ensure that, provided the system starts off in the normal region \((i > i_M) \), it cannot end up in the floor region, the Taylor rule must be modified.

A simple modification (or amplification) of the Taylor rule that avoids the liquidity trap is as follows. The exogenous own nominal interest rate assumption for money is replaced by the following simple rule:

\[\delta + \pi^* - i_M > 0 \]

14 Provided \(\delta + \pi^* - i_M > 0 \) it will shift the \(NF \) locus to the right towards the \(\pi = 0 \) locus.
\[i_M = i - \alpha \]
\[\alpha > 0 \] (26)

The Taylor rule for the short nominal interest rate on non-monetary financial instruments continues to be given, as before, by equation (17), that is:

\[i = \bar{i} + \gamma \pi \]
\[\gamma > 1 \] (27)

The rest of the model is as before. Note, however, that there is now no restriction on the domain of the nominal interest rate function. Equation (26) ensures that the constraint that the short nominal interest rate on non-monetary instruments cannot fall below the short nominal interest rate on money never becomes binding. Specifically, since the own rate of interest on money moves up and down one-for-one with the short nominal interest rate on non-monetary instruments, there is no (zero or other) lower bound to the level of the short nominal interest rate. The ‘floor region’ and the liquidity trap have been abolished at a stroke, by assuming that the monetary authorities follow a rule for the own nominal interest rate on money ensures that the nominal interest rate on non-monetary securities is always above the own nominal interest rate on money. Only the simplest kind of rule, maintaining a constant wedge between the two interest rates is considered here. This apparently minor change in specification implies that there now is just the normal region, with its saddlepoint configuration, and that only the normal steady state exists.

The rule for the two short nominal interest rates given in equations (26) and (27) may require the payment of non-zero (positive or negative) interest rates on money. In Section III we consider what the practical obstacles to paying negative interest on money may be.

Note that, because the opportunity cost of holding money, \(i - i_M \), is positive and constant, the ratio of real money balances to consumption will also be constant in this model.
(III) Paying interest on currency to avoid a liquidity trap

In the model of Section II, neither the use of fiscal policy nor an increase in the target rate of inflation can guarantee that the economy will not end up at the (zero) nominal interest rate floor. When the nominal interest rate on non-monetary instruments is governed by a Taylor rule, the only way to ensure that the nominal interest rate floor cannot become a binding constraint in policy is to adopt a rule for the own nominal interest rate on currency that keeps the nominal rate on currency always below the nominal interest rate on non-monetary instruments. In general, this rule will require the payment of interest on currency. While technically and administratively awkward, the payment of interest, positive or negative, on currency is in principle feasible.

That nominal interest rate floor at zero is not a technological, immovable barrier. It is the result of a policy choice - the decision by governments or central banks to set the administered nominal interest rate on coin and currency at zero, rather than at some other (negative) level. Coin and currency are government bearer bonds. A bearer bond is a debt

16 Bearer securities are securities for which ownership is established by possession, without any need for registering title. Thus, a bearer bond is a bond with no owner information attached to it. The legal presumption is that the bearer is the owner. If the issuer of the bond is credit-worthy, they are almost as liquid and transferable as cash. Cash (coin and currency) is a special case of a zero interest (or zero-coupon) bearer bond issued by the state (generally through the central bank). Currency can be viewed as a zero coupon bearer consol or bearer perpetuity, since it can be interpreted as having an infinite maturity. It may actually be more informative to view currency as a zero coupon finite maturity bearer bond, which is issued and redeemed at par, with redemption taking the form of the one-for-one exchange of old currency for new currency which is indistinguishable from the old currency (see Buitert and Panigirtzoglou [1999, Appendix 1]).

The vast majority of ‘international bonds’, historically called ‘eurobonds’ are bearer. Bearer bonds can take two main forms. First, the traditional ‘definitive’ style, where the bonds literally are individual pieces of security-printed paper in denominations of, say, $10,000, which individual holders bring in to paying agents so as to receive payment of interest and principals. Second, ‘global’ bonds, which are technically bearer instruments but consist of a single piece of paper representing the entire issue (and so worth hundreds of millions or even billions of dollars). In practice, the terms of the global bond say that only Euroclear (the settlement system based in Brussels) or Cedelbank (the settlement system
security in paper form whose ownership is transferred by delivery rather than by written notice and amendment to the register of ownership. We shall refer to all securities that are not bearer bonds as registered securities. Bearer bonds are negotiable, just as e.g. money market instruments such as Treasury Bills, bank certificates of deposit, and bills of exchange are negotiable. Coin and currency therefore are bearer bonds. They are obligations of the government, made payable not to a named individual or other legal entity, but to whoever happens to present it for payment - the bearer. Coin and currency have three further distinguishing properties: they are government bearer bonds with infinite maturities (perpetuities or consols); their coupon payments (which define the own (or nominal) rate of interest on coin and currency) are zero, and they are legal tender (they cannot be refused in final settlement of any obligation).

17 A financial instrument is negotiable if it is transferable from one person to another by being delivered with or without endorsement so that the title passes to the transferee. Key elements of negotiability include the following: (1) transfer by physical delivery; (2) transfer is such as to confer upon its holder unchallengeable title and (3) a negotiable instrument benefits from a number of evidential and procedural advantages in the event of a court action.
There are two reasons why interest is not paid on currency. The first and currently less important one has to do with the attractions of seigniorage (issuing non-interest-bearing monetary liabilities) as a source of government revenue in a historical environment of positive short nominal rates on non-monetary government debt.

The second, and more important, reason why no interest is paid on coin and currency, are the practical, administrative difficulties of paying a negative interest rate on bearer bonds. Significant 'shoe leather' costs are involved both for the state and for private agents.

There is no practical or administrative barrier to paying negative nominal interest rates (market-determined or administered) on registered securities, including balances held in registered accounts, such as bank accounts. The reason is that, for registered securities, the identities of both the issuer and the holder (the debtor and the creditor) are known or easily established. This makes it easy to verify whether interest due has been paid and received. Thus the non-bearer bond part of the monetary base, that is, banks' balances with the central bank, could earn a negative nominal interest rate without any technical problems. Positive interest payments or negative interest payments just involve simple book-keeping transactions, debit or credit, between known parties.

There are technical, administrative problem with paying negative interest on the bearer bond part of the central bank’s monetary liabilities, coin and currency. While the identity of the issuer (the Central Bank) is easily verified, the identity of the holder is not.

18. From here on, ‘currency’ will be taken to include both coin and currency. There obviously are more severe technical problems with attaching coupons or stamps to coin than to currency notes.

19. Of course, issuing negative interest-bearing monetary liabilities would be even more attractive, from a seigniorage point of view.

20. The only exception is that it would not be possible to have a consol or perpetuity with a negative nominal interest rate. Assume the constant nominal coupon payment of the consol is positive. If the infinite sequence of short nominal rates is negative, the value of the consol would be unbounded positive. A negative coupon would yield an unbounded negative value for the consol.
There is no obligation to register title to currency in order to establish ownership. Possession effectively provides complete title. This creates problems for paying any non-zero interest rate, because it is difficult to verify whether a particular note or coin has already been credited or debited with interest.

The problem of verifying whether interest due on bearer bonds has been paid is present even when the interest rate is positive. However, the problem of getting the anonymous holder of currency to come forward to claim his positive coupon receipt from the government is less acute than the problem of getting the anonymous holder to come forward to make a payment to the government. In both cases, however, each individual currency claim has to be marked clearly as 'current', that is, as having paid or received all interest that is due. Without this, positive interest-bearing currency could be presented repeatedly for the payment of interest. Historically, the problem of paying positive interest on bearer bonds was solved by attaching coupons or stamps to the title certificate of the bearer bond. When claiming his periodic coupon payment, the appropriate coupon was physically removed ('clipped') from the title certificate and retained by the issuer.

Without further amendment, the ‘coupon clipping’ or stamping route would not work for bearer bonds with negative coupons. The enforcement problems involved in getting the unregistered, anonymous holders of the negative coupon bearer bonds to come forward to pay the issuer would be insurmountable. The only practical way around this problem, is to make the bearer bond subject to an expiration date and a conversion procedure. In the case of currency, this could be achieved by periodically attaching coupons or stamps to currency, without which the currency would cease to be ‘current’.

21This is akin to the problem of compelling payment of taxes when the tax base cannot be verified.
For currency to cease to be ‘current’, it is not enough for the monetary authority to declare that after a certain date ‘old’ currency shall cease to be legal tender. Being legal tender certainly enhances the attractiveness of currency as a store of value, medium of exchange and means of payment, but these advantages need not be enough to induce holders of ‘old’ currency, which is about to lose its legal tender status, to come forward and exchange it, at a price, for 'new' currency which does have continuing legal tender status. What serves as medium of exchange and means of payment is socially determined. Being legal tender is but one among many considerations that induce people to use certain classes of object as means of payment and medium of exchange. For currency to cease to be current, the bearer has to be subject to a serious penalty, such as confiscation, if the appropriate coupon or stamp has not been attached. In other words, there have to be periodic 'monetary reforms'.

There is a long tradition on the cranky fringes of the economics profession of proposals for taxing money or taxing liquidity. Many of these proposals were part of wide-ranging, and generally hare-brained, schemes for curing the world's economic and social ills. The mechanics of taxing currency are straightforward main-stream economics, however.

The best-known proponent of taxing currency was probably Silvio Gesell (1862-1930), a German/Argentinean businessman and economist admired by Keynes, who wrote of him "I believe that the future will learn more from the spirit of Gesell than from that of Marx" (Keynes [1936, p. 355]). Gesell wanted to stimulate the circulation of money by getting the state to issue money that, like capital assets, depreciated in value. Rather than relying on inflation to reduce the attractiveness of holding money, Gesell proposed "Stamp

\[22\] Gesell’s motivation was not, as far as we can determine, the avoidance of or escape from liquidity traps. His aim was to eliminate the interest component of costs and prices completely from the economic system, not just in the extreme circumstances of the liquidity trap, but as a permanent feature. Our reading of his works suggest that he was a bit vague about the distinction between real and nominal interest rates. The formal model analysed in
Scrip” - dated bills that would lose a certain percentage of value each year unless new stamps were put on them (Gesell [1949]). Irving Fisher [1933] for a while supported the issuance of stamp scrip and wrote a sympathetic account of it. Stamp Scrip was actually issued briefly during the Great Depression of the Thirties in parts of the Canadian province of Alberta by the Social Credit provincial government of the day. The Canadian federal government and the courts blocked the key measures, and in the end the provincial government refused to accept its own scrip in payment. Similar local currency experiments were tried in Wörgl, Austria during the 1930s.

Thus, for negative interest on bearer bonds such as currency to be enforceable, the bearer bond has to expire after a certain date, unless it is converted into new currency. The desired interest rate on currency would be determined by the terms on which the old currency could be exchanged with the central bank for new currency. Taxing currency (or paying negative interest on currency) through expiration of old currency and conversion into new currency can be visualised as follows. After the expiration date, \(t_1 \), the issuer (the central bank) or its agents can confiscate the old currency without compensation. Provided the Section II of this paper has the property that the monetary authorities cannot influence the long-run real interest rate.

23 In August 1935 the first social credit government was elected in the Canadian province of Alberta. While its ideology owed more to the writings of two other great economic cranks, Alfred Richard Orage [1917] and Major Clifford Hugh Douglas [1919] (and to the personal involvement of the latter as economic adviser to the provincial government), the Alberta Prosperity Certificates introduced in 1936 by Premier William Aberhart, were pure Gesell. Similar in appearance to a dollar bill, the certificates required a weekly endorsement of a 2c stamp, amounting to a 104 percent annual capital levy (see Hutchinson and Burkitt [1997] and Mallory [1954]).

24 It also had failed to convince the Federal government in Ottawa to match its negative interest rates. Since Federal currency was at least as useful as a means of payment, this would require to scrip to trade at a discount with respect to the Federal currency and to appreciate vis-à-vis the federal currency at a rate that compensated for the interest differential between Federal and provincial currency.

25 Less drastic penalties might work also. For instance, old money found in circulation after its 'expiry' date would be forcibly converted into new money at the rate offered on the
forces of the law are strong enough, this could induce holders of the old currency to convert it, at a price, on or before the expiration date, rather than continue to use it in transactions or as a store of value after the expiration date and risk having it confiscated.

At fixed intervals of length \(\Delta t \) (Gesell periods, say) whose duration could, for convenience, be set at a year (or several years, in order to reduce conversion costs), and on a specific day, (Gesell day), old currency would legally revert to the issuer (the central bank). After Gesell day, the old currency has no value (because of the credible threat of confiscation) and will not be used in transactions or as a store of value. On Gesell day, \(1 \) £ worth of new currency would be issued in exchange for \(e^{-i_M t} \) £s worth of old currency, where \(i_M \) would be the policy-determined (instantaneous) nominal interest rate on currency. For simplicity, we assume \(i_M \) to be constant, although it could be time-varying. The nominal rate of interest on currency would be administratively determined, that is, set by the central bank. Earlier exchanges of old for new money might be allowed at the rate of \(1 \) £ worth of the new currency for \(e^{-i_M t} \int_{t_0}^{t_1} e^{i(t)} dt \) £s worth of the old currency, where \(t_1 \) is the date of the next Gesell day, \(t_e \leq t_1 \) is the time before the next Gesell day on which the old currency is exchanged for the new, and \(i \) is the instantaneous nominal interest rate on the government's non-monetary liabilities. For currency to remain rate-of-return-dominated as a store of value, it is necessary that \(i_M < i \). Both rates could be negative, and may have to be, if zero bounds are to be ruled out. Coin and currency would effectively become time-limited, finite maturity financial claims.

\(e^{-i_M t} - 1 \) would be the effective (Gesell) period tax rate on currency. The instantaneous tax rate would be \(-i_M\).
New currency could, in principle, be used in transactions before midnight on the Gesell day before they are formally introduced. The relative value of the old currency in terms of the new currency would change at an instantaneous rate \(i_M \), to ensure that, at the moment the old currency expires and the new currency comes in officially, there is no discrete jump in the value of old money in terms of new money, or of goods and services in terms of money.\(^{27}\) It follows that, during the period of coexistence of old and new money, the rate of inflation of the prices of goods and services would be higher in terms of old money than in terms of new money, with the excess of the old money inflation rate over the new money inflation rate equal to \(-i_M\).

Our scheme for removing the zero nominal interest rate floor by taxing currency only applies to government bearer bonds with an administratively determined nominal rate of return, that is to coin and currency. Commercial banks’ balances with the central bank are not bearer bonds, but registered securities, in the terminology of this paper. The nominal interest rate on these balances is determined administratively, but paying negative interest on them is as simple as paying positive interest. Bank deposits, which are private registered securities in our terminology, would not need to be taxed. If, when currency is taxed, the equilibrium nominal market yield on deposits, and on any other private registered securities, is negative, banks will pay a negative interest rate on deposits, without any need for taxing deposits. The same applies to private electronic or e-money, including ‘money on a chip’, internet accounts etc.

Clearly there are costs associated with Gesell money, even if one can come up with a slightly higher-tech (and tamper-proof) alternative to physically stamping currency. These

\(^{27}\) This is just like the ex-dividend price of a share of common stock being equal, on the day the dividend is paid, to the dividend-inclusive price of the stock minus the dividend. In our example, the dividend would be negative.
shoe leather costs have to be set against the benefits of removing the zero floor on the nominal interest rate.

There are costs (and benefits) other than shoe-leather costs associated with taxing currency. Taxing currency would be regressive, since only the relatively poor hold a significant fraction of their wealth in currency. Taxing currency would also, however, constitute a tax on the grey, black and outright criminal economies, which are heavily cash-based. In the case of the US dollar, with most US currency held abroad (one assumes by non-US residents), it would represent a means of increasing external seigniorage.

(V) Conclusion

To avoid getting into a liquidity trap, or to get out of one once an economy has landed itself in it, there are just two policy options. The first is to wait for some positive shock to the excess demand for goods and services, brought about through expansionary fiscal measures or through exogenous shocks to private domestic demand or, in an open economy, to world demand. The second option is to lower the zero nominal interest rate floor on currency by taxing currency. If a rule were followed that kept the nominal interest rate on currency systematically below the nominal interest rate on non-monetary instruments, the economy could never end up in a liquidity trap. Such a rule would require the authorities to be able to pay interest, negative or positive, on currency, that is, to turn currency into ‘Gesell money’.

The transactions and administrative costs associated with what amounts to periodic currency reforms would be non-trivial. Such currency conversion costs could be reduced by lengthening the interval between conversions, but they would remain significant. These

28 Unless drug dealers switch elastically to non-stamped currency.
'shoe-leather costs' of taxing currency have to be set against the potential benefits of avoiding a liquidity trap. It may take quite a lot of shoe leather to fill an output gap.
References

Benhabib, Jess, Stephanie Schmitt-Grohé and Martín Uribe [1999b], “Avoiding Liquidity Traps”, Mimeo, NYU, December.

Clouse, James, Dale Henderson, Athanasios Orphanides, David Small and Peter Tinsley [1999], “Monetary Policy When the Nominal Short-Term Interest Rate is Zero”, Board of Governors of the Federal Reserve System, Mimeo, July 13.

Iwata, Shigeru and Shu Wu [2001], “Estimating Monetary Policy Effects When Interest Rates are Bounded at Zero”, Department of Economics, University of Kansas mimeo, May.

Krugman, Paul [1998a], "Japan's trap", mimeo, May.

Krugman, Paul [1998b] "Further notes on Japan's liquidity trap", mimeo, June

Krugman, Paul [1999], "Inflation targeting in a liquidity trap: the law of the excluded middle", mimeo February 1999

35

