REAL EXCHANGE RATE OVERSHOOTING AND THE

Willem H. BUITER
University of Bristol, Bristol BS8 1HY, UK, and NBER

Marcus MILLER
 University of Warwick, Coventry CV4 7AL, UK

1. Introduction

The proposition that under a floating exchange rate regime restrictive monetary policy can lead to exchange rate is now accepted fairly widely. The fandamend product markets combined with a freely flexible nominal exchange rate. Current and anticipated future monetary policy actions are reflected immediately in the nominal exchange rate, set as it is in a forward-looking efficient auction market while they are reflected only gradually and with a lag in domestic nominal labour costs and/or goods prices. Nominal appreciation of the currency therefore amounts to real

 implies an overshooting of the long-run equilibrium. The transitory (but potentially quite persistent) loss of competitiveness is associated with a dec output below its capacity level. This excess capacity is one of the channels through which restrictive monetary policy brings down the rate or domestic cos
One of the virtues claimed for the sharp initial appreciation of the nominal and real exchange rate in response to a previously unanticipated tightening of the stance of monetary policy is its immediate effect on the domestic price level. The domestic currency prices of those internationally traded goods whose foreign

*The authors have benefitted from discussions with Avinash Dixit. Financial support from the Leverhulme Trust is gratefully acknowledged. Opinionsexpressed
the National Bureau of Economic Research nor of the Leverhulme Trust.
0014-2921/82/0000-0000/\$02.75 (C) 1982 North-Holland

 (predetermined), (foreign price level (exogenous), $=$ real output (endogenous),
$=$ domestic nominal interest
 $=$ nominal interest rate paid on domestic money (exogenous),

$\begin{aligned} & =\text { trend or core rate of inflation } \\ & =\text { rate of tax on capital inflows or subsidy on outflows (exogenous), }\end{aligned}$
$D=$ differential operator, i.e., $D x(t) \equiv(\mathrm{d} / \mathrm{d} t) x(t)$,
$D^{+}=$right-hand-side differential operator, i.e.,
$\begin{aligned}+= & \text { right-hand-side differential operator, i.e., } D^{+} x(t)=\lim _{T \rightarrow t}^{T \rightarrow t} \\ & (T-t),\end{aligned}$ Eq. (1) is the LM curve: m denotes a fairly wide monetary aggregate such as
£M3 which consists to a significant extent ($50-60 \%$) of interest-bearing deposits. We therefore measure the opportunity cost of holding money by the interest

 country is large in relation to the world market. Both through its effect on the prices of internationally traded final goods and through its effect on the price of imported raw materials and intermediate inputs, a sudden step appreciation of paper we shall argue that the effect of such exchange rate jumps is merely to redistribute the cost of reducing inflation over time: early gains have to be 'handed back' later as the equilibrium level of competitiveness is restored. Crucial to this argument is the assumption of stickiness of some nominal domestic cost component. In our model this is built in by our assumption of a predetermined nominal money wage and through our specification of the behaviour of the 'core'
 curve. Subject to one quite significant qualification, the core rate of inflation is viewed as predetermined with its behaviour over time governed by a first-order

 treated as predetermined, π, while determined by a 'backward-looking' process, can make discrete jumps at a point in time. This will happen whenever there is a exchange rate jumps or if there is a change in indirect taxes. Since the exchange rate is a forward-looking price which responds to 'news' about current and future shocks, the underlying rate of inflation indirectly and to a limited extent also responds to such shocks.

To put the present paper in perspective it is useful to relate our current approach to that of an earlier paper [Buiter and Miller (1981)]. This is done in Section 3 contains some modifications of the simple model. It is here that we discuss the implications of assuming flexibility of domestic nominal wage costs. While we do not believe that such a 'neo-classical' specification is appropriate for the analysis of an advanced industrial economy like the U.K., the discussion of
 the behaviour of domestic costs. Section 4 analyzes in some detail the behaviour
of the model with sluggish 'core' inflation.

2. A simple model of real exchange rate overshooting

A slightly simplified version of the model in Buiter and Miller (1981) is given in
eqs. (1)-(5), all variables except for $r, r_{d}, r^{*}, \pi, \theta$ and τ being in logs,
(1)

 output.

Assuming that the conditions for the existence of a saddlepoint equilibrium are

 increase.
We now briefly summarize the effects on competitiveness and output of a
number of policy actions similar to the ones implemented by the Thatcher government.
2.1. An unanticipated and immediately implemented reduction in the rate of

There is no long-run effect on competitiveness associated with a reduction in the monetary growth rate. The steady-state stock of real money balances increases owing to the lower nominal interest rate associated with the lower steady-state rate of inflation. The dynamics are described in fig. 1. The reduction in Dm is
 at E_{1}. To achieve convergence to the new equilibrium the nominal exchange rate jumps so as to put the system on the saddlepath $S S^{\prime}$ through E_{2}. With p

 From the LM equation (1) it can be seen that with r_{d} and θ exogenous and l predetermined, r and y have to move in the same direction in response to any

[^0]is one way of imposing the crucial property of nominal inertia, stickiness or sluggishness. Eq. (5) reflects the assumption of perfect capital mobility and perfect ubstitutability between domestic and foreign bonds. Risk-neutral specn net of equate the uncovered interest differential in favour of the domestic country, net of any tax on capital imports, to the expected rated of dial markets and r^{*} is domestic currency. The country is small in the world financial markets and r^{*} is treated as given. The assumption or rational expections, empill to

 ets it equal to zero, so competitive banking system with a binding required reserve ratio $h(0<h<1)$ on all bank

 demand. We prefer treating r_{d} as exogenous so that discretionary changes in r_{d} can be used to describe policy actions to alter the degree of competitiveness of the banking system. The dynamics of the system is conveniently summarized in terms of the two state variables l and c,
$l \equiv m-p$,
(q9)
(e9)
 Real competitiveness c is a forward-looking or jump variable. It jumps whenever e jumps. The state-space representation of the model of eqs. (1)-(6)
E
 unique unstable trajectory, drawn with reference to the initial equilibrium, which
 interval of duration T. In the absence of further 'news' no other discrete jumps in e and c occur, reflecting the assumption that the behaviour of risk-neutral speculators will eliminate anticipated future jumps in e, as these would be associated with infinite anticipated rates of capital gain or loss.
 as its centrepiece an announced sequence of four annual one-point reductions in the target range of monetary growth. Approximating the range by its central value, the response of the system to the unanticipated and immediate introduction of the MTFS can be depicted as in fig. 22^{4} If there were only a single unanticipated
one-point reduction in the rate of monetary growth, c would jump immediately to E_{12} on $S_{1} S_{1}$. If the entire four point reduction in $D m$ were to be implemented immediately, the system would jump to E_{12}^{\prime} on $S_{4} S_{4}$.

The actual effect is intermediate between these two extremes. The initial jump
 jump in c is a function of the announced future reductions in monetary growth.

 planned after the fourth year. If a non-inflationary rate of monetary growth is the
 a further five or six years of successive one-percentage-point reductions in Dm

 variables for that year.
${ }^{4}$ We assume that the policy announcement was unanticipated and credible - perhaps a doubtful
assumption.

2.5. An unanticipated increase in the level of the money stock
An unanticipated and immediately implemented once-and-for-all increase in m does not alter the long-run equilibrium real money stock or level of
 behaviour of the economy when subjected to such a shock is described in fig. . 4 .
The initial and final equilibrium are both at E_{1}. The initial real money stock is l_{1}
 $m_{2}-p_{1}, m_{2}>m_{1}$. The real exchange rate jump-depreciates to E_{12} to place the

 unchanged, an increase in the rate of growth of the nominal money stock will, by
raising inflation and the nominal interest rate, reduce the long-run stock of real

 uv \& direct to indirect taxation. Consider an initial equilibrium at E_{1} in fig. 5. An move the economy to E_{12}, with real exchange rate appreciation and excess capacity resulting during the transition to the new long-run equilibrium E_{2}. The reason for this costly disequilibrium adjustment is stickiness of the real money

 through the worst recession since the 1930's.

3. Real exchange rate overshooting and the wage-price process

A crucial component of all models exhibiting disequilibrium overshooting of

 the specification of this equation in order to establish the robustness of the overshooting proposition.
3.1. A direct effect of the exchange rate on the domestic price level
 wage rate, w, can be treated as predetermined, the domestic price level might in an open economy still be capable of making discrete jumps at a point in time. This will be the case if the domestic currency price of internationally traded goods is a express the domestic price level, p, as a weighted average of the sticky domestic money wage and the domestic currency value of an appropriate (trade-weighted)

Fig. 4. Unanticipated increase in the level of the money stock.

Fig. 5. A reduction in the growth of the money supply combined with a jump in the level.

97

It is easily seen that (7) is the special case of (11) with $\alpha=1$. A necessary and sufficient condition for the existence of a unique saddle-point equilibrium is (12) uе 'ssəuәл!!!

 әәәч ио!̣вгәр!

 associated with a smaller percentage reduction in p.

 further here.

We now consider the case where both the money wage and the real wage are

 expected (and actual) rate of wage inflation, i.e.,
$\pi=D w$.
ت
The domestic price level or c.p.i. is a weighted average of the price of domestically produced goods and
$\cdot I \bar{P}^{2} g \overline{>} 0 \quad{ }^{\prime}\left({ }_{d *} d+\partial\right)\left({ }^{2} g-I\right)+{ }^{H} d^{z} g=d$
(12")

future policy change is announced. After that it moves gradually in a straight line

It is instructive to contrast monetary disturbances with a real shock such as
 run equilibrium from E_{1} to E_{2}, lowering l and raising c. If the increase in $r^{*}+\tau$

 combining the assumption of perfectly flexible money wages with the assumption of sluggish adjustment in the real wage. The latter is treated as predetermined because of (generally unspecified) transactions and adjustment costs.

The model of eqs. (1), (2), (8), (9), (4') and (5) has the following very simple state-
space representation:

$$
\left[\begin{array}{l}
D l \\
D c
\end{array}\right]=\left[\begin{array}{cc}
\lambda^{-1} & \gamma^{-1} \delta-(1-\alpha) \lambda^{-1} \\
0 & \gamma^{-1} \delta
\end{array}\right]\left[\begin{array}{l}
l \\
c
\end{array}\right]
$$

$$
+\left[\begin{array}{ccc}
1 & -\alpha^{-1}(1-\alpha) & -\lambda^{-1} \\
0 & -\alpha^{-1} & 0
\end{array}\right.
$$ -

With both e and w freely flexible, neither of the two state variables l and c is predetermined. A unique convergent solution trajectory exists because there are now two unstable characteristic roots $\left(\lambda^{-1}\right.$ and $\left.\gamma^{-1} \delta\right)$. The system is also recursive, with $D c$ independent of l and also of the policy instruments $D m, r_{f}$ and θ. Only a real shock (such as a change in the foreign real interest rate $r^{*}+\tau$) will The diagrammatic representation of the system is given in fig. 6. Without loss of generality we assume that the $D l=0$ locus is downward-sloping. Consider an unexpected, immediately-implemented reduction in $D m$. The initial equilibrium is at E_{1}, the new equilibrium at E_{2}. Note that these equilibria are completely unstable. Since the cut in the monetary growth rate is immediately implemented, l jumps immediately from E_{1} to E_{2} with no change in c. Monetary disinflation is costless. If we consider a previously unanticipated future reduction in $D m, l$ will jump to an intermediate position like E_{12} between E_{1} and E_{2} at the moment the

(Кч!!
$\stackrel{\rightharpoonup}{\square}$
$\therefore 8$
(091) The IS curve can therefore be written as

$$
\begin{aligned} y= & -\frac{\gamma(1-\alpha)}{1-\alpha(1+\gamma \phi)}\left(r^{*}+\tau\right)+\frac{\alpha(1-\alpha)(\gamma \eta+\delta)}{1-\alpha(1+\gamma \phi)} c \\ & +\frac{(1-\alpha)}{1-\alpha(1+\gamma \phi)} f .\end{aligned}
$$

(16d)

$D c=(\phi /(\alpha-1)) y-\eta c$.

 $D(w-p)=0]$,
(LI)

The system is still dichotomized, and the behaviour of $c, w-p, y$ and $r-D p$ is independent of monetary shocks, but even if we start at full employment, real

 equilibrium the IS equation is

$$
y=-\gamma\left(r^{*}+\tau\right)+\delta \alpha c+f .
$$

(18)
(61) $\quad \frac{h(x-\mathrm{I})-x \varrho \phi}{x \rho h(\mathrm{I}-x)}-\left(2+*^{l}\right) \frac{h(x-\mathrm{I})-x \rho \phi}{\operatorname{ch}(\mathrm{I}-x)}=1$

Apart from the absence of an automatic return to full employment the behaviour of the flexible money wage - sticky real wage model is qualitatively
 in $D m$ is shown in fig. 8. An unanticipated immediately-implemented reduction in $D m$ instantaneously moves the system to the new stationary equilibrium E_{2}

100

Eq. (4"), in combination with (9), yields

$D w=\phi y+D p-\eta(w-p)$,

$D(w-p)=\phi y-\eta(w-p)$.

Eq. (14) can be viewed as a rational expectations version of the kind of equation proposed by Sargan (1980). It is also very close to an equation found in Minford (1980) although his equation incorporates nominal stickiness. The state-space representation of the model with nominal flexibility and real stickiness is given in eq. (15) below:

$\left[\begin{array}{l}D l \\ D c\end{array}\right]=$

(15)

 characteristic roots of eq. (15) are λ^{-1} and $-[\eta(1-\alpha)+\phi \alpha \delta] /[1-\alpha(1+\gamma \phi)]$. The
 sign of $1-\alpha(1+\gamma \phi)$. This has the following interpretation. Add an exogenous
demand shock f to the IS equation (2). This yields $y=-\gamma(r-D p)+\delta(e-p)+f$. It is demand shock f to the IS equation (2). This yields $y=-\gamma(r-D p)+\delta(e-p)+f$. It is
readily checked that

EOI

 this version of the model is given in

$$
\left[\begin{array}{c}
D l \\
D c
\end{array}\right]=\left[\begin{array}{cc}
\lambda^{-1} & \gamma^{-1} \delta \\
0 & \gamma^{-1} \delta
\end{array}\right]\left[\begin{array}{l}
l \\
c
\end{array}\right]+\left[\begin{array}{cccc}
1 & 0 & -\lambda^{-1} & -1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
D m \\
r^{*}+\tau \\
\theta \\
r_{d}
\end{array}\right]
$$

3.4. Rational expectations in the labour market with money wage stickiness
 associated wage equation (14) of the previous section, a single change of assumption concerning the behaviour of the money wage destroys the classical

0

Fig. 8. Money disturbances (with money wage flexibility and real wage rigidity). moment that the reduction in $D m$ actually occurs. This whole process again takes place without any changes in c, y or $r-D p$. Now consiaer the effect of an increase in $r^{*}+\tau$ in this model, which changes the
long-run equilibrium in fig. 9 from E_{1} to a point such as E_{2}. With c predetermined, an immediate unanticipated increase in $r^{*}+\tau$ causes an equal jump increase in e and w, lowering l to E_{12}. From there c and l converge gradually to the new long-run equilibrium E_{2} along the unique convergent trajectory $S^{\prime} S^{\prime}$. A previously unanticipated future increase in $r^{*}+\tau$ leads to an immediate jump in l down to a point intermediate between E_{1} and E_{12}, such as E_{12}^{\prime}. From there l declines gradually to E_{12} where it arrives when $r^{*}+\tau$ is actually raised. c and l then increase gradually along $S S^{\prime}$ towards E_{2}. It is interesting to see what happens to the wage equation (14') when the
exchange rate has no effect on the price level, i.e., when $\alpha=1$. In that case the price equation (8) becomes
$p=w$,

while the wage equation reduces to

$\phi y=\eta(w-p)$.

(20a)

 (q0Z) Eqs. (20a) and (20b) imply that $y=0$ at each instant. The model now is in many ways the same as the model with money wage and real wage flexibility discussed in section 3.2 and summarized in eq. (13). The link between the real wage and the

 which c and follow the unstable trajectory (drawn with reference to $E_{1} S^{\prime}$ when $D m$ is actually cut. There always will be a finite initial jump in c
 the announced monetary growth reduction is infinitely far in the future. One implication is that if a monetary deceleration is planned, the loss of output and
competitiveness is smaller the further in advance the proposed policy action is

$$
\text { From eq. (16c) with } \eta=0 \text {, we obtain }
$$

$$
y=((\alpha-1) / \phi) D c
$$ exchange rate. The cumulative loss of output is minimized by minimizing the initial jump in c. This is achieved, for a given proposed reduction in $D m$ by announcing the reduction as early as possible.

The assumption made so far, that $w(t)$ is a continuous function of time, can be
derived from two more basic assumptions. The first is that $w(t)$ cannot jump

 labour market eliminates all profit opportunities associated with anticipated
 have used to rule out anticipated future jumps in e, although its application to the
labour market is rather less convincing than its use in the foreign exchange market. change in assumption does not rule out a rational expectations interpretation of (14). This is particularly obvious if we assume that $\eta=0$. The behaviour of this
rational expectations model of the labour market is, however, very different from the classical behaviour of the models of sections 3.2 and 3.3. Instead it resembles the behaviour of the sticky money wage model of section 2 and 3.1. Monetary shocks lead to real exchange rate overshooting and departures of actual from capacity output. Note that this kind of behaviour is ruled out when $\alpha=1$. This 'closed economy' representation means that rational expectations automatically rule out departures of output from capacity output. ${ }^{7}$ With the assumed asymmetry in the behaviour of c and w, and with a direct effect of e on p, monetary shocks will alter the real wage and the real exchange rate and cause departures from full employment.
With the sticky money wage interpretation of eq. (14), l and c again assume the
. The response of the system to an unanticipated reduction in $D m$ is sketched in

Fig. 10. Reduction of money growth (with money wage stickiness).
If the reduction in $D m$ takes place immediately c jump appreciates to E_{12}^{0}. After that it moves gradually to E_{2} along $S^{\prime} S^{\prime}$. From eq. (16d) we see that this jumpappreciation of c will be associated with a fall in output. An anticipated
future reduction in $D m$ will be associated with a smaller immediate jump-appreciation of c when the news arrives, to E_{12}^{1} say. This jump places c and l ${ }^{7}$ These issues are discussed for the fixed exchange rate case in Buiter (1978, 1979).
Bru

$$
\begin{aligned}
& \text { W.H. Buiter and M. Miller, Real exchange rate overshooting } \\
& m-p-\theta=k y-\lambda(r-r d), \\
& y=-\gamma(r-D p-D \theta)+\delta(e-p), \\
& p=\alpha w+(1-\alpha) e, \\
& D w=\phi y+\pi, \\
& D \pi=\xi(D p+D \theta-\pi), \\
& D e=r-r^{*}-\tau, \\
& l=m-w, \\
& c=e-w .
\end{aligned}
$$

$$
\text { Its state-space representation is given in eqs. (25) and (26), }{ }^{9}
$$

601
addition, it is assumed that aggregate demand is interest inelastic: the IS curve is

 refer to this as policy A.
We examine the mechanism through which inflation is reduced and calculate
 alternative policy, referred to as policy B, which reduces the long-run rate of
 the same path of output. We note that these policies differ in their effects on the price level, even in the long run. In the short run, the recession induced by an overvalued exchange rate will show a sharper fall in the rate of inflation than the

 is independent of the rate of monetary growth, the initial jump decline in $c=e-w$

 unchanged in the long run, the new steady-state paths of both e and w under

 associated with a higher stock of real money balances. It is possible (but not

 exceed the new, lower, rate of monetary growth. [See Buiter and Miller (1981).]
 stock of real money balances but its long-run price level path lies above the price
 stock path also lies above the exogenously determined nominal money stock path of policy A .

 mean that $D e$ will typically be larger with policy A than with policy B because the
levels of the new steady state paths of e and w are lower in the former case levels of the new steady state paths of e and w are lower in the former case
than in the latter.
We also briefly consider another policy designed to attain the same reduction in the rate of inflation as with policy A, but without any loss of output. This policy involves a cut in indirect taxes and (in general) a change in the level of the nominal stock of money.
As long as w is predetermined, the output cost of achieving a given reduction in
the steady-state rate of inflation (defined as the cumulative net amount of excess

We now turn to a more detailed study of the behaviour of the model of eqs. (25)
and (26) in section 4 .
4. The real exchange rate and the output cost of monetary disinflation in a model
with sluggish 'core' inflation

In this section we solve the model of eqs. (25) and (26) for the time paths of selected variables, using a particular set of 'plausible' parameter values. The numerical example is designed to focus on the role of the real and nominal exchange rate in monetary disinflation. Two common channels of the monetary transmission mechanism are intentionally closed off. Thus 'core' inflation in the labour market is backward looking (although π will jump iff e jumps) and, in
bring forward the anti-inflationary gains, it is not possible to reduce the net output cost of bringing down inflation by engineering an early appreciation of the real exchange rate.

4.1. Parameter values

To illustrate the operation of the model we consider the results of choosing
particular values for the parameters as follows:

$\lambda=2, \quad k=1, \quad \alpha=\frac{3}{4}, \quad \phi=\xi=\delta=\frac{1}{2}, \quad \gamma=0$.

Without loss of generality let $r^{*}+\tau=\theta=r_{d}=0$.
With these values substituted into eq. (25) the system becomes

$$
\left.\begin{array}{c}
D l \\
D \pi \\
D c
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & -3 / 16 \\
-1 / 16 & -1 / 8 & 7 / 64 \\
-1 / 2 & -1 & 1 / 8
\end{array}\right]\left[\begin{array}{c}
l \\
\pi \\
c
\end{array}\right]+\left[\begin{array}{c}
\mu \\
0 \\
r^{*}
\end{array}\right]
$$

©
The characteristic equation is $\rho^{3}-\rho / 16-3 / 64=0$ and the determinant is $3 / 64$
The roots are 0.418 and $-0.209 \pm 0.2618 i$ and the row eigenvector associated with the positive root $\hat{\rho}$ is found to be

$\left[\hat{v}_{1}, \hat{v}_{2},-1\right]=[1.271,-0.499,-1]$.

4.2. The impact effects of an unanticipated change in monetary growth $(\mathrm{d} \mu)$
 .
 has on the 'core' rate of inflation is

$$
\mathrm{d} \pi=\xi(1-\alpha) \mathrm{d} c=\mathrm{d} c / 8 \approx 0.36 \mathrm{~d} \mu
$$

Given the simple structure of the model, the change in competitiveness will be associated with an immediate change in output,
$\mathrm{d} y=\delta \alpha \mathrm{d} c=3 \mathrm{~d} c / 8 \approx 1.1 \mathrm{~d} \mu$,

 be represented by the same line, $C B$, until the time $t=0$ of the monetary slowdown. The money stock levels off at point B, and the price level jumps down (because of the jump-appreciation of e) and then rises for a while as shown by the
 growth (the axis and the rate of price inflation $(A A)$ are shown. It is evident from

These starting values are chosen so as to place the system on the twodescribed by

$$
x(t)=\mathrm{e}^{\rho t}\left(B_{1} \cos \omega t+B_{2} \sin \omega t\right)=B \mathrm{e}^{\rho t} \cos (\omega t-\varepsilon),
$$

where the values for B_{1}, B_{2}, B and ε are calculated from the initial conditions in
The same parameters, calculated in the same manner, are shown for $y, D w, D c$ and $D p$ in the second panel of table 1. These variables are also measured as deviations from their new equilibrium values. For output (y) this is zero, by construction, but for wage and price inflation ($D p$ and $D w$) the new steady state ఫЕЧМ แ! ‘əәиә! ollows, we will assume that the newly chosen rate of monetary growth is zero, so that there is no inflation in the new equilibrium.

A check on the calculations contained in the table, and some indication of how the policy works, is obtained by integrating the paths shown there for $D w$ and $D p$. The formula ${ }^{11}$ which gives the required integral is

$$
\int_{0}^{\infty} x(t) \mathrm{d} t=\left(-\rho B_{1}+\omega B_{2}\right) /\left(\rho^{2}+\omega^{2}\right)
$$

where B_{1} and B_{2} are shown in the body of the table and the values for ρ and ω are given in note b to the table. Applying this we find

$$
\int_{0}^{\infty} D w(t) \mathrm{d} t=-2.0 \quad \text { and } \quad \int_{0}^{\infty} D p(t) \mathrm{d} t=-1.2843 .
$$

The discrepancy is accounted for by the fact that the price level shows an
 The fall will be simply $(1-\alpha) \mathrm{d} c$, where $\mathrm{d} c$ measures the initial impact of the monetary policy on competitiveness. The initial loss of competitiveness is

 integral reported above, this gives a total of -2.0 for the long-run effect on the price level. Thus the real wage is unchanged in the long-run, as one would
 required to increase real balances to satisfy the higher demand for liquidity at the lower nominal interest prevailing when prices are stable.)

115
initial level of core inflation $\pi(0)=\bar{\mu}=1.0$, the initial value of the price level $p(0)$

 [еә. әЧ7 'sus!

 of inflation equals the rate of growth of the money supply. As will become clear,
 phenomenon' should in the current example be turned around: money here is an inflation phenomenon.

The first alternative policy (called B) takes the path of output to be precisely the same as that generated by the monetary contraction just described with policy A.
This can be achieved e.g. by adding a fiscal instrument g to the IS curve so that (29)

 equation (1) then becomes
(30)

With p and π predetermined and y determined by (29) with $c=0$, eq. (30) determines the nominal money stock. Other ways of stabilizing the real exchange

 are included in the model, however, it is less straightforward (although possible) to specify an output path without reference to the money supply.
 of table 1. Inflation starts at a significantly higher level than before with policy A because the starting value for core inflation π is now $\bar{\mu}=1.0$. The path followed by

 eliminating inflation as measured by the size and duration of the recession. But if we measure the output costs of checking inflation simply by the unweighted integral of y (which means that some of the recession is cancelled out by subsequent boom as output cycles towards equilibrium) the following expression
for the cumulative net loss of output can be obtained:

$y(t) \mathrm{d} t=(\bar{\mu}-\vec{\mu}) / \xi \phi$.

 bring down the steady-state inflation rate by 1 percentage point is four 'pointyears' loss of output. ${ }^{12}$
Our model ignores due to non-linearities in the Phillips curve which might cause two years with 5% excess capacity to have a stronger counterinflationary effect than 1 year with 10% excess capacity. The evidence on this is, however, by no means clear. in competitiveness. We see how they compare with what we have just seen for policy A in terms of the speed with which inflation is reduced and the cost in terms of lost output.

4.5. Alternative policies

In order to see how much the initial loss of competitiveness contributes to the speed with which inflation is reduced and to cutting the cost of reducing inflation
we consider alternative policies which keep competitiveness constant at its longrun equilibrium value throughout. If competitiveness is thus kept constant and $c=e-w=0$, the price level and the wage rate will move together, as can be seen from eq. (8). As a consequence the inflation process in the model
reduces to the familiar augmented Phillips curve commonly used to characterize closed economies. We get

$D p=\phi y+\pi$,

$(1,1,1)$
$(8 z)$
The stabilization of the real exchange rate precludes both the discrete adjustment
to the core rate of inflation π, which was a feature of the previous policy, as well as any discrete jumps in the price level. Both π and p are predetermined. Given the ${ }^{12}$ As a measure of economic waste, $\int_{o}^{\infty} y(t) \mathrm{d} t$ is only really useful if $y(t)$ does not change sign on the interval $[0, \infty)$. Zero net output loss is consistent with periods of prolonged and large
excess supply followed by periods of prolonged and large excess demand. A more appropriate
 with the initial jump in the price level, gives the figure of $-4 / 3$ as the long-run difference in the price level resulting from the two policies. What is apparent from the above is that the policy of fighting inflation by cycles in output and in the real exchange rate (with an initial recession associated with an overvalued exchange rate) does not lead to any change in long-run inflation, compared to the same output cycle and a stable real exchange rate. The loss of competitiveness does however reduce inflation more quickly early on, as shown
 away later when competitiveness is regained in the boom, but we are left with the conclusion that inflation is brought down more quickly with policy A , as shown by the solid line in fig. 12. (Inflation under the alternative policy is shown by the dotted line.)
 on inflation not unlike those attributed to temporary incomes policies by those who argue that the latter hold down inflation in the short run, but have no effect

W.H. Buiter and M. Miller, Real exchange rate overshooting

$\stackrel{\circ}{-}$

The price level towards which the system converges under the alternative policy is, however, higher than the long-run price level of policy A. This can be seen from the coefficients in table 1 . While $\int_{0}^{\infty} D p_{\mathrm{A}}(t) \mathrm{d}(t)=-2$ for model A , as we have
already discussed, integrating the path for inflation under model B yields a already discussed, integrating the path for inflation under model B yields a
smaller fall,

$\int_{0}^{\infty} D p_{\mathrm{B}}(t) \mathrm{d} t=\frac{-\rho 0.4633-0.6553 \omega}{\rho^{2}+\omega^{2}}=-\frac{2}{3}$

These results are illustrated in fig. 11 where the path followed by the price level and the rate of inflation under policy B are plotted alongside those already proceeds from point B without any 'jump' along a path $(B B)$ which cycles
 price level for policy A.

In the bottom panel the rate of inflation is shown starting at point B and cycling towards zero along the path $B B$. Thus inflation starts at a higher level under the alternative policy than under the floating exchange rate case. The inflation can be seen from fig. 12. There, labelled $S R P C_{\mathrm{B}}$, is the 'short-run
 determines the values of inflation shown as $D p_{\mathrm{B}}(0)$. From this point inflation and output cycle towards the origin as shown by the path labelled $B B$. By contrast the relationship determining inflation under policy A.

$D p_{A}(0)=\phi y(0)+\pi_{A}(0)+\frac{(1-\alpha)}{\alpha \delta} D y(0)=\phi y(0)+\pi_{A}(0)$

as $\quad D y(0)=0$,

 the inception of the monetary slowdown under fle revaluation of the currency alls away following the path shown as $A A$.

The gap between the two paths in fig. 12, $D \tilde{p}$, can be plotted against time.
Its dynamic characteristics (after the jump in p_{A}) are obtained from table 1 where (7の u!̣s $80 Z 0^{\circ} 0+7 \infty$ soo $\left.8 \angle \varsigma \varepsilon^{*} 0-\right)_{1 d^{2}}=^{\mathrm{q}} d a-{ }^{\forall} d a \equiv d a$

Alternatively, incomes policy can be used to jump π. If incomes policy can be

 disinflation. If monetary policy changes or announcements themselves directly change π, as is the case in the model of section 2 , then disinflationary monetary policies will also be 'efficient' in the sense we are using that term here.

5. Conclusion

After a summary of various approaches to the modelling of the inflationary process in an open economy with a floating exchange rate, we have studied the way in which a monetary slowdown might be expected to work in an economy where core inflation is sluggish, and adjusts to actual inflation with a significant
Despite such sluggishness we found that core inflation can be reduced quickly

 exchange rate.
Since the model is 'superneutral', however, such changes in the real exchange

 of core inflation. Thus for $\xi=\phi=\frac{1}{2}$ the net output loss associated with reducing
 For comparison we considered an alternative where the real exchange was held

effects on core inflation by a sudden loss of competitiveness, this will not

$\left(Z^{*} \vee\right)$
As can be seen from the characteristic equation, $f(0)<0$ as $\Omega>0$, but $f(\rho)$ tends
 not surprising given the presence of the forward looking variable, c. The other

 $v^{\prime}[\rho I-A]=Z^{\prime}$ where Z^{\prime} denotes the zero vector. Normalizing the eigenvector appropriately, this means

$z^{d}\left[x \rho\left(\phi-{ }_{\tau}-\gamma y\right)+(x-I)\left(\xi-{ }_{\tau}-\gamma\right)\right]-{ }_{\varepsilon} d$
$0=\zeta \zeta-d\left[{ }_{\tau}-\gamma(x-I) \xi+\log \phi\left(\varsigma-{ }_{\tau}-\gamma\right)\right]-$

The prompt anti-inflation success due to the loss of competitiveness being absent,

 of output will (if $\xi \phi=\frac{1}{4}$) reduce steady state inflation by 1%, irrespective of the path taken by the real exchange rate (provided it starts and finishes at the same level). Thus the freedom to vary the real exchange rate in order to reduce inflation does not succeed in reducing the output costs of changing steady state inflation; it does however change the time path of inflation, relative to other policies which exhibit the same output path.

While the numerical model makes no claim to being a realistic model of the U.K., we would point out that the sort of output costs associated with reductions in medium term inflation in Treasury evidence to the Treasury Committee suggested a figure of 4 point-years of output for each 1 point of medium-term Treasury model, when the slope of the Phillips curve was flatter and the mean lag of core inflation longer, showed even higher costs [see Miller (1979)]. In considering 'efficient' disinflationary policies, we noted that a cut in indirect taxes could reduce the output costs of curing inflation by securing an immediate jump reduction in the price index at market prices and in the core rate of inflation. In our model a reduction in the rate of growth of money by $\mathrm{d} \mu$ accompanied by a
 in steady state inflation of $\mathrm{d} \mu$. (In general a change in the level of the money stock will also be required.)

In the U.K., a one point cut in VAT is reckoned to cut the rate of indirect taxation by a half a point. A 4 point reduction in VAT would therefore avoid the four point-years of output loss otherwise associated with a point reduction in monetary growth. The present administration's decision to raise VAT by 8 points early in their term of office, at the same time that a programme of successive reductions in monetary growth was announced, would in our model increase the cost of bringing down inflation. In the short run, however, the adverse consequences of the VAT increase on the price level are countered by the appreciation of the exchange rate.

Those who argue that incomes policies can secure a step reduction in core inflation, would of course advocate their use as a way of cutting the output costs of reducing inflation [see, for example, Tobin (1977)]. We have not examined this case in detail in this paper. We have however, considered the possibility that announced monetary policy could immediately and directly reduce core inflation in just such a fashion. If announced monetary policy has this sort of direct expectational effect, then it will save output costs, just as a similarly successful
incomes policy would. If, however, monetary targets only secure immediate
W.H. Buiter and M. Miller, Real exchange rate overshooting 123
References exchange rate, Economica 45, 251-272. economy, Journal of Economic Dynamics and Control, Muiter, Willem H. and Marcus Miller, 1981, Monetary policy and international competitiveness,
 Coventry). Dornbusch, Rus 84, Dec., 1161-1176.
Economy (University of Chicago, Chicago, IL). Kravis, I. and R. Lipsey, 1978, Price behaviour in the light of balance of payment theories, Journal of International Economics 8, 193-247.
Liviatan, N., 1980, Anti-inflationary monetary policy and the capital import tax, Warwick Economic Research Paper no. 171 (University of Warwick, Coventry).
Miller, M., 1979, The unemployment costs of curing steady state inflation, Mimeo. (University of Warwick, Coventry).
Minford, P., 1980, A rational expectations model of the U.K. under fixed and floating exchange rates, Carnegie-Rochester Conference Series on Public Policy 12, 293-355.
Okun, Arthur M., 1978, Efficient disinflationary policy, American Economic Review 68, May, 353Sargan, J.D., 1980, A model of wage-price inflation, Review of Economic Studies 47, Jan., 97-112.
Tobin, James, 1977, How dead is Keynes?, Economic Enquiry 15, Oct., 459-468.

where the last column is not given in full for simplicity. This implies $$
v_{2}=1 /\left(\xi(1-\alpha)-\rho^{2}\left(\lambda^{-1}-\rho\right)^{-1}\right) \text {. }
$$

To ensure stability, the path to be followed by the system must not depend on
The positive (unstable) root. Dixit (1980) has the eigenvector associated with the positive (unstable) root. Dixit (1980) has

 equilibrium) equals zero, i.e.,
$\hat{v}_{1}(l(0)-\bar{l})+\hat{v}_{2}(\pi(0)-\overline{\bar{\pi}})-(c(0)-\bar{c})=0$.
(A.4)
$\bar{T}, \bar{\pi}$ and $\overline{\bar{c}}$ are the new long-run equilibrium values of l, π and c and \hat{v}_{1} and \hat{v}_{2} are elements associated with the unstable root.
Let $D m \equiv \mu$. The terms measuring initial disequilibrium following an
unanticipated change in μ, denoted $\mathrm{d} \mu$, can be evaluated as follows:

$l(0)-\bar{l}=\lambda \mathrm{d} \mu$,
 $\pi(0)-\overline{\bar{\pi}}=\pi(0)-\overline{\bar{\mu}}$,
 $c(0)-\overline{\bar{c}}=\mathrm{d} c$, the j

$v_{1}=1-v_{2}(\rho+\xi(1-\alpha))$, $$
v_{2}=1 /\left(\xi(1-\alpha)-\rho^{2}\left(\lambda^{-1}-\rho\right)^{-1}\right) .
$$

To ensure stability, the path to be followed by the system must not depend on
 (2, (

\section*{(A.5)}

where $\overline{\bar{\mu}}$ denotes the new value of μ.
From eq. (24") we know that
$\mathrm{d} \pi=\xi(1-\alpha) \mathrm{d} c$,
and so the initial disequilibrium in π becomes

$\pi(0)-\overline{\bar{\pi}}=\xi(1-\alpha) \mathrm{d} c-\mathrm{d} \mu$.

Hence eq. (A.4) can be rewritten as
$\hat{v_{1}} \lambda \mathrm{~d} \mu+\hat{v}_{2}(\xi(1-\alpha) \mathrm{d} c-\mathrm{d} \mu)-\mathrm{d} c=0$,
and so the initial change in competitiveness found to be

$\mathrm{d} c=\frac{\hat{v}_{1} \lambda-\hat{v}_{2}}{1-\hat{v}_{2} \xi(1-\alpha)} \mathrm{d} \mu$.

[^0]: ${ }^{2}$ The equilibrium is a saddlepoint if the state matrix has one stable and one unstable characteristic
 root. A necessary and sufficient condition for this is that the determinant of the state matrix be
 negative.苃

