
$\frac{\text { Oil, Disinflation, and }}{\text { Export Competitiveness }}$
$\begin{aligned} & \text { A Model of the "Dutch Disease" } \\ & \text { Willem H. Buiter and Douglas D. Purvis }\end{aligned}$

[^0]NATIONAL BUREAU OF ECONOMIC RESEARCH, INC.
1050 MASSACHUSETTS AVENUE
CAMBRIDGE, MA 02138

0 and Export
 = es

 The 1970s were a decade of major economic upheaval and turbulence, leaving many unresolved issues competing for the attention of economists.
 agreement as to what the major issues are. Two phenomena which share honors in this regard are the advent and questionable performance of flexible exchange rates, and the developments associated with the price and availability of oil. Both of these are important elements of the "great stagflation" experienced during the seventies; as both are well documented elsewhere, ${ }^{1}$ in the remainder of this introduction we outline only briefly
 framework which can be used to disentangle the effects on the real exchange rate of increases in the world price of oil, discoveries of domestic oil reserves, and monetary disinflation. While the main part of the chapter involves a small analytical model that we hope to be of fairly general interest, much of what follows is motivated by our observations of recent developments in the United Kingdom.
With respect to the "oil shocks" of the 1970s, the major developments ensued from the formation of the OPEC cartel leading to the quadrupling
 features of the 1970s was that industrial economies which were net exporters of oil (and other energy-related products whose prices also rose) experienced considerable problems adjusting to a price increase
An earlier version of this chapter was presented to the Annual Meetings of the American Economics Association in Denver, September 1980. We would like to thank Slobodan Djajic, Robert Dunn, Marcus Miller, and Peter Neary for their helpful comments. The research reported here is part of the NBER's research in International Studies. Any opinions expressed as those of the authors and not those
of the National Bureau of Economic Research.
 in quantitative analysis of the American economy.

 NBER publications.
An earlier version of this paper appeared as NBER Working Paper No. 592. It is reprinted with permission from Economic Interdependence and Flexible
Exchange Rates, edited by Jagdeep S. Bhandari and Bluford H. Putnam (1983), pages 221-247. Copyright
1983 by The Massachusetts Institute of Technology. All rights reserved.
 be maintained with the increased domestic absorption associated with the resource boom accounting for the required decline in net exports. If the domestic nonoil good is an imperfect substitute for the imported manufactured good and if the home country is large in the world market for domestically produced good, as we shall henceforth assume, then an "oil shock" will in most cases raise the relative price of the home good,

 here any presumption that oil price increases will be more harmful to countries with large oil reserves.

The model used in our paper differs from others in the literature in a
 diate good, a feature emphasized, for example, by Findlay and Rodriguez [1977], Bruno and Sachs [1979], and Djajic [1980]. One result of this specification is that there are no long-run negative implications for the

 we have a nominal rigidity rather than a real rigidity as analyzed, for example, by Bruno and Sachs [1979], Branson and Rothenberg [1980], and Purvis [1979]. Our specification is more in conformity with that of Dornbusch [1976], a point we return to below.

 For example, in the Dutch case the Slochteren gas discoveries led in the
 part of which was allocated to an expansion of the labor-intensive public service sector. This put upward pressure on wages in the manufacturing sector which exacerbated the unfavourable exchange rate effects on
 [1980], for example, focus on this aspect of the issue. They examine a
 demand for labor and drive up manufacturing wages. One problem with this result is that the "demise" of the manufacturing sector is seen as the mirror image of a boom in prosperity for labor. This does not seem to accurately reflect the experience of countries currently experiencing the Dutch disease, particularly the United Kingdom. Never-
theless, the role of the nontraded goods sector is likely an important

 decline in the level of activity in the export oriented and import-competing

 to lead to a contraction of the manufacturing sector via the loss of "competitiveness" due to appreciation of the domestic currency.

In this chapter we critically examine the implicit analysis leading to this diagnosis; while a detailed description is postponed until the model is set out, there are a number of comments concerning "oil shocks" that we wish to make at the outset.

 the paradox noted above is then that the nonoil export sectors of the oil-

 oil importers such as the United States. However, this possibility is not explored further in this chapter.

Second, it is obviously desirable to distinguish between price and

 domestic reserves of oil. ${ }^{2}$ To the extent that the returns from a new discovery are captured by agents who consume the domestic manu‘әшози! ие К КІе!!

 (positive or negative) income- or wealth-motivated demand effects; in the conclusions we offer some comments on extending the model to
 and possible domestic factor market responses.

 balance. (Occasionally this analysis is also applied to the short run.) Abstracting from service account developments indicates that a resource
 note is that this does not automatically imply a shrinking of gross manu-

8.1 A Macroeconomic Model with Oil as Income and Wealth

 oil, an unanticipated increase in the world price of oil, and an unanticipated reduction in the rate of monetary growth using a model that

 production is treated as exogenous; the relation between current oil

 home but consumed at home and abroad; foreign demand is less than

 exchange rate. The model is given in equations (1)-(9); the variables are as defined in table 8.1:
$p=\beta_{1} p_{\mathrm{H}}+\beta_{2}\left(e+p_{\mathrm{b}}^{\mathrm{f}}\right)+\left(1-\beta_{1}-\beta_{2}\right) e$,
$\quad 0 \leqslant \beta_{1}, \beta_{2}, 1-\beta_{1}-\beta_{2} \leqslant 1 ;$
$q_{\mathrm{H}}=-\gamma_{1}(r-\dot{p})+\gamma_{2}\left(e-p_{\mathrm{H}}\right)+\gamma_{3} y^{\mathrm{p}}+\gamma_{4}\left(e+p_{\mathrm{b}}^{\mathrm{f}}-p_{\mathrm{H}}\right)$,

$\quad \gamma_{1}, \gamma_{2}, \gamma_{3}>0, \quad \gamma_{4} \gtrless 0 ;$
$\dot{p}_{\mathrm{H}}=\phi_{\mathrm{H}}+\mu, \quad \phi \geqslant 0 ;$
$m-p=k y^{\mathrm{p}}+(1-k) y-\lambda^{-1} r, \quad k, \lambda>0 ;$
$r=r^{\mathrm{f}}+\dot{e} ;$
$y=v q_{\mathrm{H}}+(1-v) q_{\mathrm{b}}+\left(1-v-\beta_{2}\right) p_{\mathrm{b}}^{\mathrm{f}}+\left(\beta_{1}-v\right)\left(e-p_{\mathrm{H}}\right)$,
$\quad 0 \leqslant v \leqslant 1 ;$
$y^{\mathrm{p}}=v q_{\mathrm{H}}^{\mathrm{p}}+(1-v) q_{\mathrm{b}}^{\mathrm{p}}+\left(1-v-\beta_{2}\right) p_{\mathrm{b}}^{\mathrm{f}}+\left(\beta_{1}-v\right)\left(e-p_{\mathrm{H}}\right)$;
$c=e-p_{\mathrm{H}} ;$
$l=m-p_{\mathrm{H}}$.
The domestic cost of living is a weighted average of the price of domestic
nonoil goods, the price of oil, and the price of nonoil imports [equation
(1)]. Output of nonoil goods is demand determined and depends on the
real interest rate, the relative prices of foreign and domestic goods, and real interest rate, the relative prices of foreign and domestic goods, and
domestic nominal interest rate
world nominal interest rate (exogenous) permanent real income (logarithm)
actual real income (logarithm)
actual production of domestic non oil goods (logarithm)
actual production of oil (logarithm)
actual production of oil (logarithm)
permanent production of domestic nonoil goods (logarithm)
permanent production of oil (logarithm)
permanent production of oil (logarithm)
\dot{m}, rate of growth of the nominal money stock (exogenous)
share of non oil production in domestic value added
share of non oil production in domestic value added
logarithm of real liquidity in terms of the non oil domestic good
logarithm of the real exchange rate
a. A dot over a variable indicates a time derivative.
part of the Dutch disease story, but one we shall not address in this chapter; we do return briefly to this issue in our conclusions.

Given nominal inertia in domestic prices and costs, our model can generate transitional deindustrialization and unemployment in response to an oil price (or indeed an oil discovery) shock. We wish to argue, however, that this is not a complete explanation of the real appreciation, deindustrialization, and unemployment experienced by many industrial countries in the late 1970s. There is no necessary reason to associate all or even most of the "deindustrialization" with the oil shocks; due consideration must also be given to the role of domestic stabilization policies. In particular, we wish to suggest as an additional explanation the tight monetary policies implemented in some countries in response to the acceleration of inflation set off by the initial 1974 increase in oil prices. Under flexible exchange rates, with international capital mobility, monetary contraction will lead to a large and rapid fall of the nominal exchange rate. As Dornbusch [1976] has emphasized, if in addition inflation inertia is strong, so that domestic prices are sluggish to adjust, then there will also be a real appreciation in the short run with adverse consequences for the competitiveness of the domestic manufacturing

8.1 A Macroeconomic Model with Oil as Income and Wealth

 oil, an unanticipated increase in the world price of oil, and an unanticipated reduction in the rate of monetary growth using a model that

 production is treated as exogenous; the relation between current oil

 home but consumed at home and abroad; foreign demand is less than

 exchange rate. The model is given in equations (1)-(9); the variables are as defined in table 8.1:
$p=\beta_{1} p_{\mathrm{H}}+\beta_{2}\left(e+p_{\mathrm{b}}^{\mathrm{f}}\right)+\left(1-\beta_{1}-\beta_{2}\right) e$,
$\quad 0 \leqslant \beta_{1}, \beta_{2}, 1-\beta_{1}-\beta_{2} \leqslant 1 ;$
$q_{\mathrm{H}}=-\gamma_{1}(r-\dot{p})+\gamma_{2}\left(e-p_{\mathrm{H}}\right)+\gamma_{3} y^{\mathrm{p}}+\gamma_{4}\left(e+p_{\mathrm{b}}^{\mathrm{f}}-p_{\mathrm{H}}\right)$,

$\quad \gamma_{1}, \gamma_{2}, \gamma_{3}>0, \quad \gamma_{4} \gtrless 0 ;$
$\dot{p}_{\mathrm{H}}=\phi_{\mathrm{H}}+\mu, \quad \phi \geqslant 0 ;$
$m-p=k y^{\mathrm{p}}+(1-k) y-\lambda^{-1} r, \quad k, \lambda>0 ;$
$r=r^{\mathrm{f}}+\dot{e} ;$
$y=v q_{\mathrm{H}}+(1-v) q_{\mathrm{b}}+\left(1-v-\beta_{2}\right) p_{\mathrm{b}}^{\mathrm{f}}+\left(\beta_{1}-v\right)\left(e-p_{\mathrm{H}}\right)$,
$\quad 0 \leqslant v \leqslant 1 ;$
$y^{\mathrm{p}}=v q_{\mathrm{H}}^{\mathrm{p}}+(1-v) q_{\mathrm{b}}^{\mathrm{p}}+\left(1-v-\beta_{2}\right) p_{\mathrm{b}}^{\mathrm{f}}+\left(\beta_{1}-v\right)\left(e-p_{\mathrm{H}}\right)$;
$c=e-p_{\mathrm{H}} ;$
$l=m-p_{\mathrm{H}}$.
The domestic cost of living is a weighted average of the price of domestic
nonoil goods, the price of oil, and the price of nonoil imports [equation
(1)]. Output of nonoil goods is demand determined and depends on the
real interest rate, the relative prices of foreign and domestic goods, and real interest rate, the relative prices of foreign and domestic goods, and
domestic nominal interest rate
world nominal interest rate (exogenous) permanent real income (logarithm)
actual real income (logarithm)
actual production of domestic non oil goods (logarithm)
actual production of oil (logarithm)
actual production of oil (logarithm)
permanent production of domestic nonoil goods (logarithm)
permanent production of oil (logarithm)
permanent production of oil (logarithm)
\dot{m}, rate of growth of the nominal money stock (exogenous)
share of non oil production in domestic value added
share of non oil production in domestic value added
logarithm of real liquidity in terms of the non oil domestic good
logarithm of the real exchange rate
a. A dot over a variable indicates a time derivative.
part of the Dutch disease story, but one we shall not address in this chapter; we do return briefly to this issue in our conclusions.

Given nominal inertia in domestic prices and costs, our model can generate transitional deindustrialization and unemployment in response to an oil price (or indeed an oil discovery) shock. We wish to argue, however, that this is not a complete explanation of the real appreciation, deindustrialization, and unemployment experienced by many industrial countries in the late 1970s. There is no necessary reason to associate all or even most of the "deindustrialization" with the oil shocks; due consideration must also be given to the role of domestic stabilization policies. In particular, we wish to suggest as an additional explanation the tight monetary policies implemented in some countries in response to the acceleration of inflation set off by the initial 1974 increase in oil prices. Under flexible exchange rates, with international capital mobility, monetary contraction will lead to a large and rapid fall of the nominal exchange rate. As Dornbusch [1976] has emphasized, if in addition inflation inertia is strong, so that domestic prices are sluggish to adjust, then there will also be a real appreciation in the short run with adverse consequences for the competitiveness of the domestic manufacturing
a given, known rate. In addition, oil production is assumed not to require

$$
\text { for all } t, s \leqslant 0
$$

Permanent income accruing from oil production ${ }^{6}$ is given by
(12)

Using equations (2) and (7), we define for future use the following "gross price elasticities" of demand:
(13)
($b \mathrm{I}$)

 income effect could also be positive or negative depending upon whether the share of oil in domestic output $1-v$ is greater than or smaller than ләр!

 probable situation for countries which are significant oil exportersthen the income effect of an increase in p_{H} would work in the opposite direction to the substitution effect. We assume that γ_{2} would still be sufficiently large to ensure also $\eta_{\mathrm{c}}>0$.
 percentage change in the price and quantity of oil. It is easily seen that
 domestic nonoil goods in excess of the underlying trend rate of inflation depends on the excess demand for them [equation (3)]; ${ }^{4}$ the underlying rate of inflation is proxied by the rate of growth of the nominal money supply, a specification also adopted by Liviatan [1979] and Dornbusch [1980b]. The demand for real money balances depends on permanent income (wealth), actual income (transactions demand), and the nominal

 Perfect foresight is assumed throughout.

Equations (6) and (7) contain the definitions of actual and permanent income; they are log-linear approximations to real income. ${ }^{5}$ Note that $v \equiv P_{\mathrm{H}} Q_{\mathrm{H}} / P Y$ is the share of nonoil production in total value added. We use the ratio of the price of nonoil imports to the price of the domestic 'о!̣е. S!
 [equation (8)]. The predetermined state variable is real balances in terms of the home good [equation (9)].

Oil prices and output enter this model through their influence on income; changes in either influence demand via their implications for permanent income. While exogenous oil price increases might well be viewed as being permanent, new discoveries of oil resources are necessarily finite, so that the flow of current income they generate is of limited duration. Nevertheless we argue that either will change the steady-state
 demand patterns is the permanent income change thus elicited; increased demand for the home good will thus be spread out over time, so that an oil discovery leading to an oil flow of finite duration will alter the steadystate terms of trade.

Permanent production of nonoil goods is identified with its steadystate value; we choose units so that $q_{\mathrm{H}}^{\mathrm{p}}=0$. We abstract from the possibility that steady-state changes in relative prices alter $q_{\mathrm{H}}^{\mathrm{p}}$.

Actual oil production evolves according to
$t<0$ and $t>T, T>0$

$\bar{q}_{\mathrm{b}}>\bar{q}_{\mathrm{b}}$,

(10) for a period of length T, and then returns to its previous low level. We do not model output decisions in the oil-producing sector; the new discovery is of known size and the flow of production from it occurs at

Before examining the dynamics in detail, it is useful to examine the long-run or steady-state equilibrium conditions, characterized by
$\dot{p}_{\mathrm{H}}=\dot{p}=\dot{e}=\mu ; \quad r=r^{\mathrm{f}}+\mu ; \quad q_{\mathrm{H}}=q_{\mathrm{H}}^{\mathrm{p}}=0$ The last equation ensures that there are no long-run output effects.
The long-run goods market equilibrium locus (LIS curve) and mo The long-run goods market equilibrium locus (LIS curve) and money-
market or portfolio balance locus (LLM) can be written as

8.2 Long-Run Comparative Statics

(17)
$l=\lambda(1-v)\left(c+p_{\mathrm{b}}^{\mathrm{f}}+k q_{\mathrm{b}}^{\mathrm{p}}+(1-k) q_{\mathrm{b}}\right)-\left(\mu+r^{\mathrm{f}}\right)$ The LIS and LLM equations can be solved to yield the following reduced form expressions for steady-state competitiveness and liquidity:
(19) $c^{*}=\eta_{\mathrm{c}}^{-1}\left\{\gamma_{1} r^{\mathrm{f}}-\gamma_{3}(1-v) q_{\mathrm{b}}^{\mathrm{p}}-\eta_{\mathrm{b}} p_{\mathrm{b}}^{\mathrm{f}}\right\} ;$

$\left.+\left(k \eta_{\mathrm{c}}-(1-v) \gamma_{3}\right) q_{\mathrm{b}}^{\mathrm{p}}+(1-k) \eta_{\mathrm{c}} q_{\mathrm{b}}\right\}$.
These are depicted as the intersections of the LIS and LIM curves in
 әıи!
 downward sloping since a higher relative domestic price would be required to offset the effect of larger real balances. The LLM curve is positively sloped, indicating that a fall in the relative price of home goods increases the long-run desired value of money holdings in terms of home goods. ${ }^{9}$ We can use the LIS and LLM curves to analyze the long-run steadystate effects of a change in the exogenous variables $\mu, p_{\mathrm{b}}^{\mathrm{f}}$, and $q_{\mathrm{b}}^{\mathrm{p}} .^{10}$ In what follows we continue to assume η_{c} to be greater than zero; this is

Figure 8.1

Exogenous paths of actual oil output and permanent oil income.
smaller than η_{b}, depending upon whether the weighted income elasticity
$\beta_{2} \gamma_{3}$ is greater than or smaller than the price elasticity γ_{4}.
Using the definitions of p, y^{p}, and c, we can rewrite the demand for the home good in a semi-reduced form as ${ }^{8}$
(2')
This is only a semireduced form since c (and \dot{c} outside of long-run equilibrium) are endogenous variables. However, this particular expression will be useful later in evaluating the impact effects of the various shocks under consideration on q_{H}. Recognizing from equations (4) and (9) that
 of two dynamic equations in real money balances in terms of the home good l and the real exchange rate c. Except at those instants when the
 p_{H} is sticky and m evolves according to $\dot{m}=\mu$. However, c is not predetermined because e can take discrete jumps in response to current and anticipated future changes in the values of the parameters or the exogenous variables. The dynamic system is given by equation (15):

[^1]

 of oil that the negative income effect dominates the substitution effect,

 Hence l also rises and the new equilibrium is at E_{1}.

If the country is a net producer of oil, or at least only a "small" net

 l^{*} is ambiguous; while the real income effects captured by the change in c will have an unambiguous effect on $m-p$, the changes in relative prices render the change in $l=m-p_{\mathrm{H}}$ ambiguous. As can be seen from equation (20), the direction l changes depends upon the sign of $\eta_{\mathrm{c}}-\eta_{\mathrm{b}} .{ }^{11}$ In figure 8.4B we illustrate the case where $\eta_{\mathrm{c}}-\eta_{\mathrm{b}}>0$, so l rises and the new equilibrium E_{1} lies to the southeast of $E_{0} .{ }^{12}$ However, the case where 7Səાə in the next section. ${ }^{13}$

Figure 8.2
Long-run effects of monetary disinflation.

Figure 8.3
Long-run effects of a domestic oil discovery. simply the condition that an increase in p_{H} reduce the demand for the ciently large to ensure that $a_{21} \equiv \partial i / \partial c$ is negative

8.2.1 Monetary Disinflation

The simplest case is that of the long-run effects of a reduction in the rate of monetary growth μ. This has no effect on the real exchange rate in the long run: The LIS does not shift. The lower steady-state nominal interest rate creates an increased demand for real money balances and hence a larger l; this is reflected in the fact that the LLM curve shifts to the right, as shown in figure 8.2. While μ thus exerts no long-run effect on c, we shall see below that it does exert important short-run effects.
Figure 8.4A
Long-run effects of an increase in $p_{\mathrm{b}}^{\mathrm{f}}$: real depreciation ($\eta_{\mathrm{b}}<0$); l must rise.

Long-run effects of an increase in $p_{\mathrm{b}}^{\mathrm{f}}$: real appreciation $\left(\eta_{\mathrm{b}}>0\right)$ and l rises
$\left[\left(\eta_{\mathrm{c}}-\eta_{\mathrm{b}}\right)>0\right]$.
Table 8.2
Long-run

Disturbance		Case	Response of		
			c	l	
Monetary disinflation	($u \downarrow$)	1	0	$+$	
Foreign oil		2	+	+	if $\eta_{\mathrm{b}}<0$
price	$\left(p_{\mathrm{b}}^{\mathrm{f}} \uparrow\right)$	3	-	-	if $\eta_{\mathrm{b}}>0$ and $\eta_{\mathrm{c}}-\eta_{\mathrm{b}}<0$
increase		4	-	$+$	if $\eta_{\mathrm{b}}>0$ and $\eta_{\mathrm{c}}-\eta_{\mathrm{b}}>0$
Domestic oil		5	-	+	if $k \eta_{c}-(1-v) \gamma_{3}>0$
discovery	$\left(q_{\mathrm{b}}^{\mathrm{p} \uparrow}\right)$	6	-	-	if $k \eta_{c}-(1-v) \gamma_{3}<0$

Figure 8.6 TIME

Time path of real exchange rate: case 1-monetary disinflation; case 2-oil price
shock, net importer; case 3-oil price shock, net exporter (inflationary); case 4oil price shock, net exporter (Dutch disease).
process is unstable since the long-run value of \dot{c} is zero. The conditions of monetary equilibrium and perfect foresight require that the dynamic path through the initial equilibrium E_{1} be positively sloped and that it increase in slope as l increases; hence it is an unstable path. For stability, c must fall initially, causing an initial fall in q_{H}, so that the adjustment elicited by positive \dot{c} is consistent with stability; \dot{c} approaches 0 as c approaches c^{*} and q_{H} approaches $q_{\mathbf{H}}^{\mathrm{p}}$.

8.3.2 Increase in the World Price of Oil

As noted above, there are three cases to consider here, depending on the signs of η_{b} and $\eta_{\mathrm{c}}-\eta_{\mathrm{b}}$. Although this case involves a taxonomy, the dynamics in each subcase are simpler than those for the oil discovery case; hence we treat the oil price increase case first.

 \dot{c} would be zero and there would be no short-run effects on output. How-

 the real exchange rate must overshoot its long-run value. Although the

 due to the real appreciation, and the economy suffers "Dutch disease"style deindustrialization.
In this model, nonoil output eventually returns to its exogenously given full employment level; that is, in this model there is no long-run run Dutch disease. ${ }^{16}$ However, a "transitional" Dutch disease arises in response to an oil price shock if the real exchange rate overshoots its new equilibrium value, that is, if $\eta_{\mathrm{c}}-\eta_{\mathrm{b}}>0$. The impact of this variable can be seen by considering what would happen if c and \dot{c} were to attain their new equi-

 less than the initial change in $p_{\mathrm{b}}^{\mathrm{f}} .{ }^{17}$ But from (21), the relative change in c^{*} depends upon the ratio $\eta_{\mathrm{b}} / \eta_{\mathrm{c}}$. If $\eta_{\mathrm{b}}<\eta_{\mathrm{c}}$, then the fall in c^{*} is less than
 then imply an excess demand for money. The above discussion of the monetary disinflation case would now apply here; monetary equilibrium
 overshooting of the real exchange rate. If, on the other hand, $\eta_{\mathrm{b}}>\eta_{\mathrm{c}}$, c^{*} changes more than $p_{\mathrm{b}}^{\mathrm{f}}$ and at c^{*} with the initial value of p_{H} there would
 then require a depreciation relative to c^{*}, and there would be no overshooting or Dutch disease.

8.3.3 Discovery of Domestic Oil Reserves

Last, consider the implications of a domestic oil discovery. Although the
 for the home good necessitating a real appreciation), the dynamics are
 be of finite duration. We treat the unanticipated but fully perceived discovery of oil at $t=0$ as the combination of two disturbances: a

 two "turning points" and with output rising, falling, or both during the adjustment process.

8.4 The Exchange Rate and the Current Account

As noted in the introduction, the literature dealing with the Dutch disease often couches the analysis in terms of a balanced trade condition. As the foregoing analysis has, it is hoped, made clear, this is inappropriate. If current account balance is imposed as a long-run condition, any implication for net manufactured exports does not also apply to manufactured output. If, as we have assumed, the oil flow is finite, then the long run or steady state after an oil discovery will be characterized by a trade account deficit. However, that deficit does not mean reduced demand for home goods; rather, it reflects increased total demand due to the permanent income effect of the oil discovery; part of that demand is for imports and results in a larger volume of imports; part of that demand is for home goods and results in a higher relative price of home goods.
The trade account deficit D is given by

Figure 8.7
The respon
The response to a domestic oil discovery.
permanent unanticipated increase in oil output effective immediately and the perception and therefore anticipation of an equal permanent fall in oil output occurring at some known future time $T .{ }^{18}$ In what follows we treat only case 5 , in which l^{*} rises, abstracting from the possibility discussed earlier that l^{*} might fall; the time path of c appears qualitatively the same in either case.

The adjustment paths of c and l in case 5 are illustrated in figure 8.7. E_{0} is the original long-run equilibrium. E_{1} is the long-run equilibrium if the unanticipated increase in oil production is permanent; E_{2} is the longrun equilibrium when there is a temporary increase in oil production. If the unanticipated increase in oil production were permanent, the real exchange rate would immediately jump to c^{0}, putting the economy at E^{0} on the saddle path converging to E_{1}. The unanticipated increase in real income (actual and permanent) increases the demand for money; with both m and p_{H} predetermined, monetary equilibrium is restored by a fall in q_{H} and a rise in r. This in turn is brought about by a jump in the real exchange rate. Afterward c rises steadily toward E_{1}.

If the increase in oil production is temporary, the rise in permanent income is correspondingly smaller. c still jumps downward, but to a position above E^{0} such as E^{\prime} with c equal to c^{\prime}. This position is defined by the requirement that E^{\prime} be on the unstable solution path (drawn with reference to the eigenvectors of E_{1}) that crosses the unique stable path through E_{2} at the moment that oil production falls back to its lower level, that is, at $t=T$. One such "unstable" solution path is given in figure 8.7 by $E^{\prime} E^{\prime \prime}$. It crosses the saddle path through E_{2} at $E^{\prime \prime}$. At time T (i.e., at $E^{\prime \prime}$), the real depreciation is reversed and there is then continuous real appreciation along the new saddle path to E_{2}. The time path of c for this

Oit, Disinflation, and Export Competitiveness 241
 the permanent income accruing from current oil production. One implication of modeling demand in terms of permanent income is that in the period during which there is the increased oil production, actual income will be above permanent income. An implication of this is that the full employment current account can be expected to be in surplus because current income is high relative to current consumption, not simply because oil exports are larger. More precisely, the excess of current over permanent income means that the sum $I+X-M$ will increase, where I stands for total private and public capital formation. The economy
 formation and net foreign investment. When the oil runs out, consumption is maintained via the returns from past domestic and foreign investment. Current account balance and a trade account deficit are reconciled via increased interest and dividends from abroad.

There are a number of extensions to the model that suggest themselves, including elaboration on the production side to incorporate the role of oil as an intermediate good and thus allow a distinction between domestic costs and prices. To the extent that oil is an intermediate input

 supply price of labor, then from the point of view of the manufacturing sector an increase in the price of oil entails a significant supply shock. In terms of our model, one consequence of having oil as an intermediate input is that a negative real income effect of an oil price increase is more likely. Adverse supply effects and substitution of nonoil inputs for oil also become important-for an early analysis of this see Bruno and Sachs [1979].

We referred throughout to the domestically produced nonoil good
 produced goods, including (nontraded) services. Our aggregation of

 to this aggregate of traded and nontraded goods. There may be shifts

 given in the world market (contrary to our model) and the income elasticity of demand for services may be higher. Such a shift of resources

 so $\partial Y^{\mathrm{p}} / \partial Y<1$, then the newly oil-rich country will run a larger current account surplus or smaller deficit for as long as the additional oil flows.
 by a wide variety of exchange rate dynamics; in this model there is no necessary relation between the trade account and the exchange rate as arises in recent models (see, e.g., Dornbusch and Fischer [1980] or Rodriguez [1980]) which focus on net-wealth accumulation aspects of trade account imbalances.

8.5 Conclusion

 market power in the world market for its nonoil good, to two kinds of oil shocks and to a monetary policy shock. Both oil shocks-the unantici-
 of domestic oil-require an adjustment in the long-run relative price of nonoil tradables. The typical long-run response to an oil discovery is a worsening of the competitive position of the nonoil good. The long-run response to an oil price increase will be a rise in the relative price of nonoil goods if the country is a net exporter of oil, a fall if it is a significant net importer. A reduction in the rate of growth of the nominal money stock does not alter long-run competitiveness, but will raise the steadystate level of real money balances.

A perhaps surprising result is that even in the context of our model, which fixes steady-state nonoil output, increases in the price of oil or in known domestic oil reserves can have a transitional negative effect on manufacturing output, even for a net oil exporter. This negative output response was seen to be intrinsically linked to the possibility that the real exchange rate overshoots its long-run value. This overshooting results from our assumption that the price of nonoil goods is predetermined and responds only sluggishly to excess demand or supply, while the nominal exchange rate (and hence the domestic price of the imported manufactured good) adjusts immediately to maintain equilibrium in the asset markets.

The model focused on the role of oil prices and oil production in

Oil, Disinflation, and Export Competitiveness		24.	
Table 8.4 Reduced form and dynamic coefficients			
$a_{11}=V\left[\lambda(1-v)+z \eta_{\mathrm{c}}\right]$	$(+)$?	$a_{21}=\psi a_{11}-\phi \eta_{\text {c }}$	$(-)$?
$a_{12}=-V \lambda$	(-)	$a_{22}=\psi a_{12}$	(-)
$b_{11}=V\left[\lambda(1-v)+z \eta_{\mathrm{b}}\right]$	$(+)$?	$b_{21}=\psi b_{11}-\phi \eta_{\mathrm{b}}$	$(+)$?
$b_{12}=V(1-v)\left[\lambda k+z \gamma_{3}\right]$		$b_{22}=\psi b_{12}-\phi \gamma_{3}(1-v)$	$(+)$?
$b_{13}=V \lambda(1-k)(1-v)$	(+)	${ }^{k_{23}}=\psi b_{13}$	
$b_{14}=-V$	(-)	$b_{24}=\psi b_{14}$	(-)
$b_{15}=-V\left(1+z \gamma_{1}\right)$	(-)	$b_{25}=\psi b_{15}+\phi \gamma_{1}$	(+)
where $V=\left(1+\gamma_{1} \beta_{1} z\right)^{-1}$		$\begin{aligned} & \left(>0 \text { if } z>-\left(\gamma_{1} \beta_{1}\right)^{-1}<0 ;\right. \\ & \text { assumed throughout }) \end{aligned}$	
$z=(1-k) \nu \lambda-\phi$		($\equiv \partial \dot{c} / \partial q_{\mathrm{H}} ;>0$ in Dornbus	ch case)

 of the price of domestic output or domestic wages is taken as an unalterable institutional constraint, the real money supply can be made flexible by permitting finite responses in the level of the nominal money stock. This would remove the need for the sticky domestic price to do any adjusting.

 in the nominal money stock that permits the immediate achievement of

 as much as sticky domestic costs that is responsible for the short-run overshooting of the real exchange rate.

Appendix

Table 8.4 gives the elements of the statetransition and the forcing matrices
dity structure of the present model

(a) Commodity structure of the present model		
(1) Oil	Fixed world price	Uses no labor
(2) Domestic nonoil (manufacturers and services or traded and nontraded)	Endogenous world price	Labor intensive Uses oil as input ${ }^{\text {a }}$
(3) Imported nonoil	Fixed world price	
(b) Commodity structure of the alternative model		
(1) Oil	Fixed world price	Uses no labor
(2) Domestic nonoil traded (manufacturers)	Fixed world price	Fairly labor intensive, uses oil as input
(3) Domestic nonoil nontraded (services)	Endogenous price	Very labor intensive
(4) Imported nonoil	Fixed world price	

from manufacturing into services may be described by the term "deindustrialization," but it certainly should not be a source of concern. Also, except for problems of short-run intersectoral labor mobility, the employment implications should be favorable, since services are more labor intensive than manufactures. This scenario would follow in an alternative model sketched in part (b) of table 8.3. There is assumed to be a fixed world price for the country's nonoil exports and a nontraded good ("services"). The income and wealth increasing effects of an oil discovery raise the price of services relative to all other goods whose world prices are given. Resources flow from manufacturing into services. As in our model, there is no reason for believing that total employment and the value of total nonoil production would fall.

We assumed in our model that oil production does not compete for resources with nonoil production. This is clearly realistic as regards labor, but is less appropriate as regards capital. In the long run, however, a small country facing a perfect world capital market can accumulate its oil sector capital stock without diminishing the capital stocks of the nonoil sectors.

The model as it stands does permit some insights into the policy problems created by the divergent speeds of adjustment in goods and asset markets in an open economy. Our model focuses on the responses of aggregate demand to various shocks, and it would be straightforward to devise fiscal policies which mitigate those effects. Responding to a rise in the world price of oil with a reduction in the rate of monetary growth will, in the context of the model, intensify the loss of competitiveness and decline in output. The overshooting of the real exchange rate
 ones. In what follows we abstract from changes in v occurring as a result of the oil discovery and so treat v as the same in actual and permanent income and as constant through time. For convenience, we define permanent income in terms of actual rather than permanent prices.
6. Permanent oil production for $t \geqslant 0$ is derived as follows. The real interest rate
> used in these calculations is the steady-state real interest rate r^{f} :
$\int_{b}^{\infty} e^{-r r_{t}} d t=\int_{0}^{T} \bar{Q}_{b} e^{-r f_{t}} d t+\int_{T}^{\infty} \bar{Q}_{b} e^{-r f_{t}} d t$.
This yields $\quad{ }_{0}^{0}$
$Q_{\mathrm{b}}^{\mathrm{p}}(t)=\overline{\bar{Q}}_{\mathrm{b}}+e^{-r r T}\left[\bar{Q}_{\mathrm{b}}-\overline{\bar{Q}}_{\mathrm{s}}\right]$.
The log-linear approximation is thus $\alpha \bar{q}_{\mathrm{b}}+(1-\alpha) \overline{\bar{q}}_{\mathrm{b}}$.
7. A negative γ_{4} would indicate that either the domestic good is complementary to oil or an increase in $p_{\mathrm{b}}^{\mathrm{f}}$ leads to recession in the country's trading partners, thus reducing export demand.
8. Note that the real interest rate, $r-\dot{p}$, can be written as $r-\beta_{1} \dot{c}$ using (1) and (9). 9. In (20), δ is defined as $\eta_{\mathrm{c}} / \lambda(1-v)$, so that in the l^{*} equation the coefficient of μ is λ^{-1}. The term $\eta_{\mathrm{c}}-\eta_{\mathrm{b}}=\gamma_{2}-\gamma_{3}\left(1-\beta_{1}-\beta_{2}\right)$ takes on significance below. 10. Recall that permanent oil income $q_{\mathrm{b}}^{\mathrm{p}}$ equals $\alpha \bar{q}_{\mathrm{b}}+(1-\alpha) \overline{\bar{q}}_{\mathrm{b}}$, where \bar{q}_{b} is "nor-
 q_{b} constant, this is equivalent to examining the effect of a "larger" oil discovery, that is, to examining the effect of an increase in $\overline{\bar{q}}_{\mathrm{b}}$.
11. As $m-p$ increases, $m-p_{\mathrm{H}}$ will only fall if $p_{\mathrm{H}}-p$ increases more than $m-p$. Therefore, $m-p_{\mathrm{H}}$ will fall only if $c=e-p_{\mathrm{H}}$ falls considerably when $p_{\mathrm{b}}^{\mathrm{f}}$ increases.

 path of p relative to that of m. Now $p=\beta_{1} p_{\mathrm{H}}+\left(1-\beta_{1}\right) e+\beta_{2} p_{\mathrm{b}}^{\mathrm{f}}$. If $\eta_{\mathrm{c}}-\eta_{\mathrm{b}}<0$, the lower path of p is achieved entirely by appreciation of $e ; p_{\mathrm{b}}^{\mathrm{f}}$ is higher and the path of p_{H} has risen relative to that of m.
As Peter Neary has pointed out to us in correspondence, the difference $\left(\eta_{\mathrm{c}}-\eta_{\mathrm{b}}\right)$, equal to $\gamma_{2}-\gamma_{3}\left(1-\beta_{1}-\beta_{2}\right)$, can be interpreted as the gross cross-price elasticity
 presumption that goods are gross substitutes is therefore a presumption that $\stackrel{1}{2}$
$\stackrel{2}{2}$
$\stackrel{0}{5}$
12. Note that for a "small" country $\left(\gamma_{2}=\infty\right), d c / d p^{\mathrm{f}}=0$ and $d l / d p_{\mathrm{b}}^{\mathrm{f}}=(1-v)$,
13. The reason there are long-run effects of an increase in the foreign currency price of oil is that this increase in a nominal price also represents an increase in the relative price of oil in terms of nonoil imports whose price remains fixed at
of equation (15) in the text. In table 8.4 we also indicate the likely sign
 priori ambiguous, while the sign in the brackets indicates the case we treat as the standard one. We assume throughout that the parameter V, the coefficient of \dot{c} that arises when (2^{\prime}) is substituted into (4), is positive. From table 8.4 it can be seen that a sufficient condition for V to be positive is that z be positive, where z is defined to be the influence of a change in output of home goods q_{H} on the rate of change of competitiveness \dot{c}. From table $8.4, z \equiv \partial \dot{c} / \partial q_{\mathrm{H}}=(1-k) v \lambda-\phi$. The first term indicates the influence of q_{H} on the rate of change of the nominal exchange rate operating through the money market, while the second indicates the influence on the rate of change of p_{H} operating through the home goods market; assuming z to be positive would be following Dornbusch in assuming the short-run adjustment in asset markets dominates that in goods markets. In fact we assume only that $z>-\left(\gamma_{1} \beta_{1}\right)^{-1}$, which is less than zero; this is necessary and sufficient to ensure $V>0$. The ambiguities indicated in table 8.4 remain after $V>0$ has been imposed; for example, with z negative a_{11} could also be negative.

Note that the coefficients of i can be represented as simple linear functions of the coefficients of \dot{c}; all are adjusted by the multiplicative factor $\psi=\phi \gamma_{1} \beta_{1}>0$, and four (corresponding to $c, p^{\mathrm{f}}, q_{\mathrm{b}}^{\mathrm{p}}$, and r^{f}) also have an additive adjustment of $-\phi$ times the relevant elasticity. We shall usually assume that ϕ is small, so that this adjustment does not alter the
 we assume that η_{c} is sufficiently large to render a_{21} negative even though a_{11} is positive.

Notes

 say because of taxes, subsidies, or tariffs on oil.the domestic and world prices of oil measured in terms of a common currency,
3. Indeed, as Dornbusch showed, the sluggishness of prices may in fact cause the nominal exchange rate to overshoot its long-run equilibrium path in addition to the real exchange rate overshooting its long-run equilibrium value.
4. Capacity output of domestic nonoil goods is exogenous and, through choice of units, its logarithm is set equal to zero. Fixing capacity output, of course, precludes any possibility of long-run deindustrialization.
5. The levels of current and permanent real income are defined, respectively, by
Oil, Disinflation, and Export Competitiveness 247
Dornbusch, R., and Stanley Fischer (1980). "Exchange Rates and the Current
Account," American Economics Review 70, 960-71.
Findlay, R., and C. Rodriguez (1977). "Intermediate Imports and Macroeconomic Policy Under Flexible Exchange Rates," Canadian Journal of Economics 10, 208-17. Liviatan, N. (1979). "Neutral Monetary Policy and the Capital Import Tax," unpublished.
Purvis, D. (1979). "Wage Responsiveness and the Insulation Properties of a Flexible Exchange Rate," in A. Lindbeck (ed.), Inflation and Employment in Open Economies (North-Holland).
Rodriguez, Carlos (1980). "The Role of Trade Flows in Exchange Determination: A Rational Expectations Approach," Journal of Political Economy 88, 1148-58. Wilson, C. (1979). "Anticipated Shocks and Exchange Rate Dynamics," Journal of Political Economy 87, 639-47.
$p^{\mathrm{f}}=0$. If nonoil imports are omitted from the model $\left(\beta_{2}=1-\beta_{1}\right.$ and $\left.\gamma_{2}=0\right)$, there will be no long-run effects of an increase in the nominal foreign price of oil on l or $e+p_{\mathrm{b}}^{\mathrm{f}}$. If oil price increases were indexed on the price of domestic nonoil
 if $\beta_{2}=1-\beta_{1}$ and $\gamma_{2}=0$ (see Buiter [1978]).
14. If z were negative, then a_{11} could be negative and the $\dot{c}=0$ locus would be negatively sloped. As long as it still cuts the $\dot{l}=0$ locus from above, the analysis in the text holds; in particular, the saddle path would still be positively sloped. Necessary and sufficient for the equilibrium to be a saddle point is that $|A|$ be negative. For anticipated or "preannounced" disturbances the analysis is a little more complicated. This is treated in the context of the oil discovery case below. 15. Note that while our model has a sticky price level, the inflation rate is a jump variable. In fact, by equation (3) the initial fall in q_{H} means that the inflation rate falls immediately by more than the reduction in μ. The model could be extended to allow for inertia in the inflation rate.
16. In a more complete model incorporating oil as an intermediate input, long-run real output might be altered. In that case the drop in real output on impact would be relative to that new value of $q_{\mathrm{H}}^{\mathrm{p}}$.
17. From (4), a unit fall in c creates an excess supply of money of $1-v$ while a unit rise in $p_{\mathrm{b}}^{\mathrm{f}}$ creates an equivalent excess demand.
18. See Wilson [1979] for an early analysis of the dynamics of anticipated future disturbances.

References

Blinder, A. (1980). Government Policy and the Great Stagflation (Academic Press). Branson, W. H., and J. Rothenberg (1980). "International Adjustments with Wage Rigidity," European Economic Journal 13, 309-42.

Bruno, M., and J. Sachs (1979). "Macroeconomic Adjustment with Import Price Shocks: Real and Monetary Aspects," mimeo.

Buiter, W. (1978). "Short-Run and Long-Run Effects of External Disturbances Under a Floating Exchange Rate," Economica 45, 251-72.

Corden, M., and P. Neary (1980). "Booming Sector and De-Industrialization in a
Small Open Economy," unpublished.
Djajic, S. (1980). "Intermediate Inputs and International Trade: An Analysis of Real and Monetary Effects of an Oil Price Shock," unpublished.

Dornbusch, R. (1976). "Expectations and Exchange Rate Dynamics," Journal of Political Economy 84, 1161-76.

Dornbusch, R. (1980a). "Exchange Rate Economics: Where Do We Stand?," Brookings Papers on Economic Activity, 143-86.

Dornbusch, R. (1980b). "Monetary Stabilization, Intervention and Real Appreciaion," National Bureau of Economic Research Working Paper No. 472, April.

[^0]: NATIONAL BUREAU OF
 ECONOMIC RESEARCH, INC.

[^1]:
 - Uмор słృ!
 larger demand arising from the increase in permanent income. As can be

 that it arises when the gross price elasticity η_{c} is relatively large.

