GREEK ECONOMIC REVIEW

Vol. 2, No. 2, August 1980

«CROWDING» OUT OF PRIVATE CAPITAL FORMATION BY GOVERNMENT BORROWING IN THE PRESENCE OF INTERGENERATIONAL GIFTS AND BEQUESTS

By W. H. Buiter*

I. Introduction

In two recent studies (Buiter and Tobin, 1979, Tobin and Buiter, 1980), James Tobin and I concluded that debt neutrality -the property that the real trajectory of the economic system is invariant under changes in the financing mix, for a given level and composition of real government spending- is a theoretical curiosum. The assumptions required for it to be valid can easily be shown to be contradicted by practical experience. In this paper, I provide a detailed statement of the case against debt neutrality in the context of a model constructed expressly to be as favorable as possible to classical invariance theorems. The model is a generalization of Diamond's version of Samuelson's overlapping generations model (Diamond (1965)), and allows for voluntary intergenerational gifts and bequests. (See Barro (1974), and Buiter (1979)). A comprehensive treatment of the subject can be found in Carmichael (1979). Except for one significant simplification, the treatment of the case of agents with "two-sided intergenerational caring" replicates the original work of Carmichael.

The overlapping generations model used to develop the non-neutrality theories is "classical" in the sense that private actions are derived from explicit optimizing behavior, perfect foresight prevails and all markets are in equilibrium all of the time. All private agents act as price takers. I shall study the behavior of this decentralized, competitive economy when a given government spending program is financed by different combinations of lump-

[^0]
EII NOLLVW甘OA TVLIdVO sо LOO ،.गNIGMO甘O,
 NOLLVWYOA TVLIdVS do Lno ،.'SNIGMOyO,

receive greater utility from the well-being of their heirs than from their own

 ұои p[пом uo!̣nq!! have been neutralized by an exactly matching voluntary transfer in the opposite direction.
Within the bounds set by the non-negativity constraints on gifts and bequests, lump-sum redistribution through borrowing or unfunded social
 if bequest or gift motives are present. Private non-market transactions are required to neutralize public non-market transactions. A formal analysis follows below.

Notation

consumption while old by a member of generation t
 size of generation t

K_{t} / L_{t}

saving by a member of generation t while old (i.e., his bequest to young members of generation $t+1$)
gift by a young member of generation t to old members of genera-
stock of real one-period government debt in existence at the beginning stock of real one-period government debt in existence at the beginning
of period t $\begin{aligned} d_{t} & \equiv D_{t} / L_{t} \\ T_{t} & : \text { lump-sum tax levied on members of generation } t \text { while young } \\ \tau_{t} & \equiv T_{t} / L_{t}\end{aligned}$

(1)
Equation (1) states that the present discounted value of lifetime consumption cannot exceed that of labor income. Given our assumptions about the utility function, u, the budget constaint will hold with equality and all solutions for c_{t}^{1} and c^{2} will be interior. Utility is a function of own lifetime consumption only. There is no gift or bequest motive. The model is completed by adding the economy-wide constraints, (2), (3), and (4).

(2)	$w_{t}=f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right)$
(3)	$r_{t}=f^{\prime}\left(k_{t}\right)$
(4)	$u_{t}=c_{t}^{1}=k_{t+1}(1+n)$

The interior first-order condition for an optimum is:
Its interpretation in terms of a tangency between an indifference curve in
c_{t}^{1}, c_{t}^{2} space and the intertemporal budget constraint is familiar. From the
2. We also assume $f^{\prime}(0)=+\infty ; f^{\prime}(\infty)=0$.
: one-period discount rate applied to the utility of one's immediate
descendant
$:$ one-period discount rate applied to the utility of one's immediate
forebear
Government Financing in an Overlapping Generations Model without Gifts
or Bequests
Each generation consists of identical households that live for two periods. During the first period of their lives each household works a fixed amount, 1. Income earned in the first period is either consumed or saved. These savings, plus accumulated interest, are the only source of income in the second period of a household's life when it is retired. Households are also identical across generations. Initially there is no government borrowing or lending and no taxation. On the output side, the model has a single commodity that can either be consumed or used as a capital good. Until government bonds are introduced, real capital is the only store of value. The model is "real": there are no money balances. The dual role to be performed by durable output -that of being an input in the production function and of being the only store of value may lead to inefficiencies in a decentralized, competitive economy. (See Diamond (1965), Buiter (1979) and Carmichael (1979)).
II. a. A Competitive Economy without Government Debt
 maximization program faced by a representative household of generation is given by:

$\max u\left(c_{t}^{1}, c_{t}^{2}\right)^{1}$

c_{t}^{1}, c_{t}^{2}

W. H. BUITER
 interest rate on savings carried from period $t-1$ into period t
 路

one-period proportional rate of growth of population

one-period discount rate applied to the utility of one's immediate descendant

one-period discount rate applied to the utility of one's immediate

 forebearGovernment
or Bequests
\grave{i}
Government Financing in an Overlapping Generations Model without Gifts
(1965), Buiter (1979) and Carmichael (1979))

first-order condition and the budget constraint, (1), we can solve for c_{t}^{1} (and c_{t}^{2}) as a function of w_{t} and r_{t+1}. Substituting the solution for c_{t}^{1} into the capital market equilibrium condition (4) and using (2) and (3) to substitute for w_{t} and r_{t+1} we obtain a first-order difference equation in k_{t} describing the evolution over time of this economy from any arbitrary set of initial conditions. ${ }^{3}$
$f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right)-c^{1}\left(f\left(k_{t}\right)-k_{t} f^{\prime}\left(k_{t}\right), f^{\prime}\left(k_{t+1}\right)\right)=k_{t+1}(1+n)$.
This system will be locally stable and converge to a steady state equilibrium

$$
\left.\frac{\partial k_{t+1}}{\partial k_{1}} \right\rvert\,<1 \text {, i.e., when }
$$

In what follows we shall assume existence, uniqueness and stability and proceed to analyze steady-state equilibria only.
In steady-state equilibrium, the capital-labor ratio and through that all real stock-stock and stock-flow ratios are constant. We solve for it by setting
$k_{t}=k_{t+1}$ in equations (1) through (5). By substituting the marginal productivity conditions (2) and (3) into (1) and (4) we obtain equations(7) and (8), the stationary private budget constraint and aggregate capital market equilibrium condition.

$$
c^{1}+\frac{c^{2}}{1+f^{\prime}(k)}=f(k)-k f^{\prime}(k)
$$

$f(k)-k f^{\prime}(k)-c^{1}=k(1+n)$.

 possibility locus, as in (9a) and (9b).From (7) and (8) we can solve for the stationary decentralized consumption

$$
\psi^{\prime}=-\left(1+f^{\prime}\right)\left[\left[1+\frac{k\left(n-f^{\prime}\right)}{1+f^{\prime}} f^{\prime \prime}\left(1+n+k f^{\prime \prime}\right)^{-1}\right]\right] .
$$

$$
\psi^{\prime}=\frac{(1+n)\left(1+\alpha^{2} k^{(\alpha-1)}\right)}{(1-\alpha) a k^{(\alpha-1)}-(1+n)} .
$$

The production function is Cobb-Douglas, with $f(k)=k^{\alpha}, 0<a<1$,
Thenary decentralized consumption possibility locus for the Cobb-
The stationary decentralized consumption possibility locus for the Cobb-
Douglas case is graphed in Figure 1. At the origin its slope is $\frac{\alpha}{1}(1+n)$
k increases monotonically as we move up from 0 towards A. As k approaches infinity (which would be beyond A in the infeasible region) the slope of the consumption possibility locus becomes - 1 . The locus is strictly concave towards the origin. For large k and more general constant returns production functions than the Cobb-Douglas, ∂c^{2} can even become positive again, a ∂c^{1}
case of extreme overaccumulation. With the Cobb-Douglas this is not possible. At the golden rule capital-labor ratio, when $f^{\prime}(k)=n, \psi^{\prime}=\ldots \partial c^{2}$ ∂c^{1}
The steady-state equilibrium of a decentralized competitive economy could be achieved anywhere on this locus. Steady-state equilibria like E_{3}, corresponding to a capital-labor ratio below the golden rule capital-labor ratio k^{*}, defined by $f^{\prime}\left(k^{*}\right)=n$, are possible as are those like E_{2} corresponding to a capital-labor ratio in excess of k^{*}. The golden rule capital-labor ratio k^{*} could be achieved by a competitive equilibrium at E_{1}, but this is not more likely than any other point on the locus. A competitive stationary equilibrium satisfies two criteria: it lies on the stationary consumption possibility locus and

 cut the stationary consumption possibility locus in the manner indicated at E_{3} and E_{2}. Only at the golden rule $\left(E_{1}\right)$ will the private budget constraint be tangent to the locus.
It is instructive to contrast the private decentralized solution with the solution achieved by an omnipotent social planner. The latter is only subject to the aggregate resource constraint:
 Thus the rate at which，for any given k, c_{2} is traded off for c_{1} when d increases

 and E_{2} in Figure 3.

> II. c. Bequests
With bequests，the utility function，the budget constraint and the capital

 first period of their lives．The value of the bequest to members of generation $t+1$ at the beginning of their second period is $B_{t}\left(1+r_{t+2}\right)$ ．When the rate of population growth is nonzero bequests shared equally among all descendants． Note that bequests must be non－negative，a useful institutional constraint．

$$
B_{t} \geqq 0 \text { for all } t .
$$

The utility function of a member of generation t is $W_{t}=v\left(c_{t}^{1}, c_{t}^{2}\right.$ ， $W^{*}{ }_{t+1}$ ）．The utility of a member of generation t depends on his own life－time consumption，c_{t}^{1}, c_{t}^{2} and on the maximum utility level attainable by a member of the next generation．For simplicity I shall consider the additively separable function：

$$
W_{t}=u\left(c_{t}^{1}, c_{t}^{2}\right)+(1+\delta)^{-1} W_{t+1}^{*} .
$$

 without a bequest motive．This ensures interior solutions for c_{t}^{1} and c_{t}^{2} and strict satisfaction of the household budget constraint．δ is the＂generational＂ discount rate；it is not to be confused with the individual＇s pure rate of time preference．Convergence，i．e．，boundedness of W_{t} requires $\delta>0$ ．The optımization problem solved by a representative member of generation t is given in equations（28）and（29）．The new economy－wide capital market equilibrium condition is given in equation（30）．

[^1]（28）$W_{t}^{*}=\max _{c_{t}^{1}, c_{t}^{2}, B_{t}} W_{t}=\max _{c_{t}^{1}, c_{t}^{2}, B_{t}}\left[u\left(c_{t}^{1}, c_{t}^{2}\right)+(1+\delta)^{-1} W_{t+1}^{*}\right] ; c_{t}^{1}, c_{t}^{2}, B_{t} \geqq 0$ ．

W．H．BUITER

$\left(f(k)-k f^{\prime}(k)-\frac{\left(f^{\prime}(k)-n\right) d}{1+n}-c^{1}\right)\left(1+f^{\prime}(k)\right)=c^{2}$
$f(k)-k f^{\prime}(k)-\left(\frac{1+f^{\prime}(k)}{1+n}\right) d-c^{1}=k(1+n)$
$\tau=\frac{\left(f^{\prime}(k)-n\right) d}{1+n}$.
By substituting（20）into（22）we can derive the steady state effect of an

By substituting（20）into（22）we can derive the steady state effect of an increase in the per capita stock of public debt on the capital－labor ratio： If the model is stable（equation 19）and if $c_{2}^{1} \leqq 0$ and $0<c_{1}^{1}<1$ the denominator of（24）is negative．The numerator is positive．We therefore obtain the familiar result that，comparing steady states，government debt issues educe the capital－labor ratio，i．e．，crowd out real capital．This＂crowding out＂ esult also obtains in the short run，as can be checked from equation（18）．Given ε_{t} ，the effect on k_{t+1} of an increase in d is

$$
\begin{aligned}
& \text { が葻 } \\
& \frac{\partial k}{\partial d}=\frac{\left(1+c_{1}^{1} n+\left(1-c_{1}^{1}\right) f^{\prime}\right)(1+n)^{-1}}{\left(c_{1}^{1}-1\right) f^{\prime \prime}\left(k+\frac{d}{1+n}\right)-\left[1+n+c_{2}^{1} f^{\prime \prime}\right] .}
\end{aligned}
$$

§్వ

is negative if $c_{2}^{1} \leqq 0$

Note that the steady－state value of d can be chosen to be negative or ansfers Irrespective of d ，if the economy is at the golden rule，no net taxes or o keep the required（23）．The growth in the total demand for debt required eld by the old capita stock of debt constant just suffices to repay the debt ositive d requires positive τ at capital－labor ratios below the golden rule ratio ＊（at interest rates above n ），negative τ in the inefficient region when $f^{\prime}(k)<n$ ．

 igure 1．The effect of an increase in d on the stationary competitive consumption ossibility locus is to shift it up at a rate $-(1+\mathrm{n})$ ．From（21）and（22）it is

Figure 3

The individual's budget constraint now contains the bequest he receives and the bequest he leaves. The capital market equilibrium condition recognizes that now both the young and the old generation can save. As before we have $r_{\mathrm{t}}=f^{\prime}\left(k_{\mathrm{t}}\right)$ and $w_{\mathrm{t}}=f\left(k_{\mathrm{t}}\right)-k_{\mathrm{t}} f^{\prime}\left(k_{\mathrm{t}}\right)$

The first order conditions for an optimum are:

$u_{1}\left(c_{t}^{1}, c_{t}^{\mathbf{2}}\right)=\left(1+r_{t+1}\right) u_{2}\left(c_{t}^{1}, c_{t}^{2}\right)$

$$
u_{2}\left(c_{t}^{1}, c_{t}^{2}\right) \geqslant \frac{\left(1+r_{t+2}\right) u_{2}\left(c_{t+1}^{1}, c_{t+1}^{2}\right)}{(1+n)(1+\delta)} .
$$

If $B_{\mathrm{t}}>0$, i.e., if there is an interior solution for bequests, ($31 b$) holds with equality. If there is a corner solution for bequests, i.e., if $B=0$ is a binding constraint, ($31 b$) holds with strict inequality. The interpretation of these first order conditions is straightforward. (31a) says that the discounted marginal utility of consumption in the second period of one's life should equal the marginal utility of consumption in the first period of one's life. (31b) states that if bequests are positive, the marginal utility of own consumption should equal the marginal utility of leaving a bequest. A marginal unit of income saved by an old member of generation t yields resources $\left(1+r_{t+2}\right)$ times larger to
 can be expressed as the discounted value of the marginal utility of consumption
 discount rate δ. Finally, since it is the utility of a representative member of generation $t+1$ that was assumed to enter into the utility function of generation t, rather than the utility of all $1+n$ descendants, the population growth
 $\mathrm{t}+1$. If the marginal utility of own consumption exceeds the marginal utility
of bequests, here will be a corner solution with $B=0$. bequests, here will be a corner solution with $B=0$. in equations (32a)-(32d).
The steady state equilibrium of the model with bequests is given
6ZI NOILVWYOA TVIIdVS AO INO ،‘SNIGMO甘D,,
government lending, with positive bequests as at A_{3}. With bequests, bonds and
 condition (30) are replaced by (29') and (30') respectively.

$$
B_{t}=\frac{B_{t-1}\left(1+r_{t+1}\right)}{1+n}+\left(w_{t}-c_{t}^{1} \frac{\varepsilon_{1}}{t}\right)\left(1+r_{t+1}\right)-c_{t}^{2}
$$

We also have the budget constraint below \bar{k}.

$$
1+n
$$

$$
(r-n) d=\tau_{\mathrm{t}}(1+n)
$$

$$
\frac{(n-r)}{1+n}(B-d(1+r))=\left(w-c^{1}\right)(1+r)-c^{2}
$$

$$
\frac{1}{1+n}(B-d(1+r))+w-c^{1}=k(1+n)
$$

 value of $d=d^{0}$ will still permit the same consumption-capital stock equilibrium to obtain as long as $\mathbf{B}^{0} \geqq\left|d^{0}(1+r)\right|$, i.e., as long as bequests can be reduced by an amount equal, in present value, to the amount of government lending. Then the involuntary government redistribution from the old to the

 redistribution from the old to the young. Given any initial value of bequests,

 can always raise the capital-labor ratio above \bar{k}. It can never bring it down
II. d. Gifts from the Young to the Old
 $\left.c_{t}^{2}, W_{t-1}^{*}\right) . W_{t-1}^{*}$ is the maximum level of utility attained by a member o generation $t-1$. We again adopt the additively separable form:
"CROWDING" OUT OF CAPITAL FORMATION

 t -1 therefore receives $G_{\mathrm{t}}(1+\mathrm{n})$ for G_{t} given up by a member of generation t. If the marginal utility of own consumption exceeds the marginal utility of gifts, $G_{\mathrm{t}}=0$. The stationary solution with gifts is given by:

$u_{1}\left(c^{1}, c^{2}\right)=u_{2}\left(c^{1}, c^{2}\right)(1+r)$

$\frac{(1+n)}{1+\rho} \leqq 1+r$.
 binding implies that (38b) holds with strict inequality. Stationary equilibrium is given by:

(38d) $k(1+n)+G=w-c^{1}$

(y),$f=$.

(y),$f y-(y) f=m$

 Earlier consumption is cet. par. valued more than later consumption. This is
 well be valued more than own later consumption. The pure rate of time preference for own consumption, $\Omega(c)=u_{1}(c, c) / u_{2}(c, c)-1$, may well be

 economy with finite-lived agents equivalent to an economy with infinite-lived agents. It also does not rule out the possibility of dynamic inefficiency through overaccumulation. Quite the contrary, if gifts are positive in the steady state,

We note that unlike standard time discounting, the utility of a member of the earlier generation is not compounded, but discounted. Convergence requires that the discount rate applied to parents' utility be positive, $\varrho>0$. Gifts of course cannot be negative. $G_{\mathrm{t}} \geqq 0$. The behavior of the competitive economy with gifts is summarized below
$\max _{c_{t}^{1}, c_{t}^{2}, G_{\mathrm{t}}}\left[u\left(c_{t}^{\mathbf{1}}, c_{t}^{2}\right)+(1+\varrho)^{-1} W_{t-1}^{*}\right] ; c_{t}^{1}, c_{t}^{2}, G_{\mathrm{t}} \geqq 0$.
$G_{t+1}(1+n)+w_{t}\left(1+r_{t+1}\right) \geq\left(c_{t}^{1}+G_{t}\right)\left(1+r_{t+1}\right)+c_{t}^{2}$
W_{t}^{*}

$H_{\mathrm{t}}-c_{\mathrm{t}}^{\mathbf{1}}-G_{\mathrm{t}}=k_{\mathbf{t + 1}}(1+n)$

$r_{\mathrm{t}}=f^{\prime}\left(k_{\mathrm{t}}\right)$

$\cdot(3 y) \cdot f^{\prime} y-(3 y) f=1 \cdot 11$

 capital market equilibrium condition reflects the fact that resources given by the young to the old, who do not save, are no longer available for capital formation.

The first order conditions of the private optimization problem are:

$$
u_{1}\left(c_{t}^{1}, c_{t}^{2}\right)=\left(1+r_{t+1}\right) u_{2}\left(c_{t}^{1}, c_{t}^{2}\right)
$$

$u_{2}\left(c_{t-1}^{1}, c_{t-1}^{2}\right)(1+n) \leqslant u_{2}\left(c_{t}^{1}, c_{t}^{2}\right)$.
 $\frac{u_{2}\left(c_{1}-1, c_{1-1}\right)}{(1+\varrho)\left(1+r_{t+1}\right)}$

цџ! equality. If there is a corner solution for gifts, i.e., if $G=0$ is a binding
 for the optimal allocation of consumption for a member of generation t

 consumption of members of generation $t-1$ takes $(1+\varrho)$. Second-period
the steady state is necessarily inefficient. An operative gift motive is indeed a reflection of a very strong desire to shift resources away from early consumption towards later consumption.
The effect of gifts on the steady state consumption possibility locus is ndicated in Figure 5. $O A_{2} A_{1}$ is the locus without gifts. For capital-labor ratios below k, defined by $f^{\prime}(\overline{\bar{k}})=\frac{1+n}{1+\varrho}$, the locus with gifts is identical with the locus without gifts because the equilibrium solution for G is zero. The stationary locus without gifts because the equilibrium solution for G is zero. The stationary
capital-labor ratio can never be above k when there is a gift motive. All solutions with $G>0$ lie on the line segment $A_{4} A_{3} A_{2}$ with slope $-(1+n)$. Starting at A_{2} where $G=0$ and $k=\overline{\bar{k}}$, an increase in G shifts the stationary consumption possibility locus up and to the left at a rate $-(1+n)$. A typical interior solution
 with slope - $\left(1+f^{\prime}(k)\right)$ on the line segment $A_{4} \mathrm{~A}_{3} \mathrm{~A}_{2}$. The stationary consumption possibility locus for the appropriate positive value of G is represented by the dashed curve through A_{3}. The entire stationary consumption possibility locus with gifts is given by the segment of the no-gift locus $O A_{2}$ and the straight
line $A_{4} A_{3} A_{2}$. with gifts is given by the segment of the no-gift locus $O A_{2}$ and the straigh
line $A_{4} A_{3} A_{2}$.
The effect of government borrowing and lending in the presence of a gift The effect of government borrowing and lending in the presence of a gift
motive is easily analyzed. As long as the economy stays in the range of capitallabor ratios below \vec{k}, government lending and borrowing will have the same effect as in the model without gifts and bequests. If $k=k$ initially (with $d=0$), government lending $(d<0)$ will not have any effect on the steady-state consumption path and capital-labor ratio. Involuntary government redistribution from the old to the young will be neutralized immediately by matching voluntary gifts from the young to the old. Government borrowing, $d>0$, will also be neutralized by matching reductions in gifts from the young

 government budget contraint with gifts, borrowing and taxes are $G_{\mathrm{t}+1}(1+n)+\left(w_{\mathrm{t}}-\tau_{t}\right)\left(1+r_{\mathrm{t}+1}\right)=\left(c_{t}^{1}+G_{\mathrm{t}}\right)\left(1+r_{t+1}\right)+c_{t}^{2}$ A where G lie on the line segment $A_{4} A_{3} A_{2}$. Starting
 tching ifts frem bovernment borrowing to the old, up to the point that the constraint $G \geqq 0$ becomes binding
and

[^2]"CROWDING" OUT OF CAPITAL FORMATION 135
ancestors. In either case utility chains stretch out in one direction only. With both gift and bequest motives, this unidirectional simplicity no longer applies. An agent in generation t cares directly about generations $t-1$ and $t+1$. These generations both care directly about generation t. Generation $t-1$ also cares directly about $t-2$ and generation $t+1$ about $t+2$. Immediately, utility chains can be seen to be running in both directions. These issues were discussed for the first time in Carmichael (1979). A particularly simple solution emerges when the following assumptions are made about the "game" played by a member of generation t with past and future generations:
 markets, i.e. he takes w_{t} and $r_{\mathrm{t}+1}$ as parametric. He also assumes that all past and future generations have acted or will act competitively in their factor markets.
 plan, knows the utility levels and actions of all past generations and correctly anticipates utility levels and actions of all future generations (rational expectations or perfect foresight).
3. A member of generation t plays a non-cooperative gift and bequest
 and future generations play the same game. This strategy is closed-loop as regards the utility and actions of the two generations with which he overlaps (generations $t-1$ and $t+1$). This means that when evaluating the alternative actions open to him at the beginning of period t, he believes that he can affect the total utility and the actions of his immediate descendants and his immediate forebears.
His strategy is open-loop as regards the utility and actions of all other generations ($t-i, i \geqq 2$ and $t+j, j \geqq 2$). Thus, when evaluating the effects of marginal changes in his actions, he ignores the impact on the actions and utility of generations that are already dead when he is born or that are born after his lifetime. ${ }^{4}$
4. When formulating his closed-loop strategy vis-a-vis generations $t-1$ and $t+1$, he believes that he can alter the behavior of these generations (i.e ${ }^{-}$ their consumption, gift and bequest choices) only by altering the total resources available to them, i.e., only through direct transfers.

 dead, i.e. Carmichael uses a closed-loop strategy vis-a-vis all later generations. The symmetry a mposed in my specification considerably simplifies the analysis.

Equations (33a) and (39b) show that G and $\frac{d(1+r)}{1+n}$ are "perfect substitutes"
the initial G, (G^{0}, say) is larger than $d^{0} \frac{(1+r)}{1+n}$, where d^{0} is the size of the $1+n$
as long as the constraint $G \geqq 0$ is not violated.
the initial $G,\left(G^{0}\right.$, say) is larger than $d^{0} \frac{(1+r)}{1+n}$
real per capita government bond issue, the private sector can and will undo the effects of the government action on consumption and the capital-labor ratio by reducing voluntary gifts from the young to the old. For any initial G, however, there always exists a government borrowing program large enough

 -моноя чэпs ‘яи! ing will always constitute a Pareto improvement as long as it does not lower k below k^{*}.
II.e. Gifts and Bequests

I now consider the case of "two-sided caring". Each generation cares about the welfare of its immediate ancestors and its immediate descendants. The utility function is:

$$
W_{\mathrm{t}}=v\left(c_{t}^{1}, c_{t}^{2}, W_{t-1}^{*}, W_{t+1}^{*}\right) .
$$

The special case of the additively separable function is again considered:

Convergence now requires not only $\delta>0$ and $\varrho>0$ but $\delta \varrho>1$.
It might be thought that the solution to the problem with both gifts and bequests is in some way a simple combination of the solutions to the cases with just gifts and just bequests. This is not so. With "one-sided caring" (either gift or bequest motives but not both) the private agent's optimization problem is a standard problem in dynamic programming. With a bequest motive, each agent in generation t cares potentially for all his descendants. Directly as regards his immediate heir, indirectly through the dependence of the utility of his immediate descendant on the utility of generation $t+2$, etc. In the same way, with a gift motive, each agent potentially cares for all his
"CROWDING" OUT OF CAPITAL FORMATION 137
order conditions and the private budget constraints of current, past and future

 $\partial W_{t}^{*}=(1+\varrho)\left(1+r_{t+2}^{*}\right) \quad \partial W_{t+1}^{*}$
(44) $\quad \frac{\partial W_{t}}{\partial B_{t}}=\frac{1+\varrho)(1+\delta)-1](1+n)}{\partial c_{t+1}^{z}}$
$(1+\varrho)\left(1+r_{t+2}\right) \quad \frac{\partial W_{t+1}^{*}}{\partial c_{t+1}} \leqq \frac{\partial W_{t}^{*}}{\partial c_{t}}$.
(45) $\quad[(1+\varrho)(1+\delta)-1](1+n)] \overline{\partial c_{t+1}^{2}} \leqq \frac{\partial c_{t}^{3}}{}$
If $B_{\mathrm{t}}>0$, then (45) holds with strict equality. If $B_{\mathrm{t}}=0$ is a binding constraint, (45) holds with strict inequality.
In an exactly analogous manner we can express generation t's marginal utility from gifts in terms of the marginal utility of own consumption of generation $t-1$.

$$
\partial W_{t}^{*}=(1+n)(1+\delta) \quad \partial W_{t-1}^{*}
$$

(46) $-\frac{\sigma_{1}}{\partial G_{1}}=\frac{(1+\rho)(1+\delta)-1}{\partial c_{t-1}^{2}}$
Combining (46) and (43c) and using (43a), we obtain: $(1+n)(1+\delta) \quad \frac{\partial W_{t-1}^{*}}{\partial c_{t-1}} \leqq \frac{\partial W_{t}^{*}}{\partial c_{t}}\left(1+r_{t+1}\right)$
(47) $\quad \frac{(1+n)(1+\delta)}{[(1+\rho)(1+\delta)-1]} \frac{\partial W_{t-1}}{\partial c_{t-1}^{2}} \leqq \frac{\partial W_{t}}{\partial c_{t-1}^{2}}\left(1+r_{t+1}\right)$.
If $G_{\mathrm{t}}>0$, then (47) holds with strict equality. If $G_{\mathrm{t}}=0$ is a binding constraint, (47) holds with strict inequality.
The steady state conditions are:

$\left(z^{2}{ }^{\prime} \nu\right) n=M$
$W=\frac{u(c, c)}{1-(1+\delta)^{-1}-(1+\varrho)^{-1}}$

W. H. BUITER

5. Each generation acts so as to maximize its utility.
If $G_{\mathrm{t}}>0,(43 \mathrm{c})$ holds with strict equality. If $G_{\mathrm{t}}=0$ is a binding constraint, (43c) holds with strict inequality. Using assumptions (1) through (6), the first
6. Each generation views the world and plays the game in the same way as the member of generation t just described.
The resulting equilibrium in this differential game is a Nash equilibrium. The behavior of this economy can be summarized as follows:
(40) $W_{t}^{*}=\max \quad W_{t}=\max \left[u\left(c_{t}^{1}, c_{t}^{\mathbf{2}}\right)+(1+\delta)^{-1} W_{t+1}^{*}+\right.$
(41) $\quad B_{\mathrm{t}}-G_{\mathrm{t}+1}(1+n) \leqq\left(\frac{B_{t-1}}{1+n}-G_{\mathrm{t}}\right)\left(1+r_{\mathrm{t}+1}\right)+\left(w_{\mathrm{t}}-c_{t}^{2}\right)\left(1+r_{\mathrm{t}+1}\right)-c_{:}^{2}$

nstraints
 $(u+1)^{\mathbf{I}+1} y={ }^{3} D-\frac{u+1}{i+1} d+i=1 \cdot u$
 $r_{\mathrm{t}+1}=f^{\prime}\left(k_{\mathrm{t}+1}\right)$
 $w_{i}=f(k)-k_{1} f^{\prime}(k)$

The first order conditions are:
$\partial W_{t}^{*}=\left(1+r_{t+1}\right) \frac{\partial W_{t}^{*}}{\partial c_{t}}$
管
(43c) $\quad \frac{\partial W_{t}^{*}}{\partial G_{t}} \leqq \frac{\partial W_{t}^{*}}{\partial c^{1}}$

If $B>0$ then (48b) holds with equality. If $B=0$ is a binding constraint then (48b) holds with strict inequality.

If $G>0$ then (48c) holds with equality. If $G=0$ is a binding constraint then (48c) holds with strict inequality.
$\left(\frac{n-r}{1+n}\right) B+(r-n) G=\left(w-c^{1}\right)(1+r)-c^{2}$

$$
k(1+n)=\frac{B}{1+n}-G+w-c^{1}
$$

$r=f^{\prime}(k)$

(y) $f x-(y) f=.11$

 quality. This is the commonsense result that there will not be both gifts and

 nequality, i.e., for both gifts and bequests to be zero.

Note that if (48b) holds with equality, i.e., if there is an interior solution
 capital-labor ratio. ${ }^{\mathbf{s}}$ Also, if (48c) holds with equality, i.e., if there is an interior
 иәчм snool K

defined by $\left(1+f^{\prime}(k)\right)=\frac{(1+\delta)(1+n)}{(1+\varrho)(1+\delta)-1}$ but above that defined by
$\left(1+f^{\prime}(k)\right)=[(1+\varrho)(1+\delta)-1](1+n)$, the stationary consumption possibility $[(1+\varrho)(1+\delta)-1](1+n)$ $\partial+1$
locus is the same as it is without gifts and bequests. On the curve segment $A_{2} A_{5}$, there are corner solutions for gifts and bequests: $G=B=0$. When there is an interior solution for gifts the equilibrium is on the line segment
$A_{1} A_{2}$ with slope- $(1+\mathrm{n}) . A_{2}$ is defined by- $\left(1+f^{\prime}(k)\right)=(1+\delta)(1+n)$
ined by $-\left(1+f^{\prime}(k)\right)=\frac{1-(1+\varrho)(1+\delta)}{1-(1)}$

As in the gifts only case, larger positive values of G shift the locus up and to the left at a rate $-(1+n)$. Note that the degree of overaccumulation relative to the golden rule is less when $G>0$, if there is both a gift and a bequest motive than if there is only a gift motive. ${ }^{7}$ The tendency to "oversave", represented by the gift motive is partly, but not completely, neutralized by the presence of a bequest motive. $A_{3} A_{4}$ would be the locus of interior solutions for G if there were only a gift motive. If the bequest motive is operative, i.e., if $B>0$, all stationary solutions lie on the line segment $A_{5} A_{6}$ with slope
$-(1+n) . A_{5}$ is defined by $\left(1+f^{\prime}(k)\right)=[(1+\varrho)(1+\delta)-1](1+n)$. As in
the case of bequests only, larger positive values of B shift the locus down and to the right at a rate $-(1+n) . A_{7} A_{8}$ would be the locus of interior solutions for B if there were just a bequest motive. The degree of underaccumulation, relative to the golden rule, is less if there is both a bequest and a gift motive than if there is only a gift motive. ${ }^{8}$

The effects of government lending and borrowing on the steady-state capital-labor ratio are a straightforward combination of the effects of such

 is in the range of k for which there is a corner solution for both B and G, i.e, on $A_{2} A_{5}$, government borrowing $(d>0)$ cannot lower k below the value
defined by $1+f^{\prime}(k)=[(1+\varrho)(1+\delta)-1](1+n)$ nor can government lending $1+\varrho$

$(d<0)$ raise k above the value defined by $1+f^{\prime}(k)=\frac{(1+\delta)(1+n)}{(1+\rho)(1+\delta)-1}$

 bequest, the constraint $B \geqq O$ will become binding.

7. We assume ϱ to be the same in both cases.
8. We assume δ to be the same in both cases.
"CROWDING" OUT OF CAPITAL FORMATION
"CROWDING" OUT OF CAPITAL FORMATION 141
government borrowing (or increases in lending) are neutralized by reductions in bequests. There always exists an increase in lending or borrowing that will make $B=0$, respectively $G=0$ a binding constraint. There always is a government financial strategy that puts the private sector in a zero gift and zero bequest corner solution, where financial policy will affect the capital-labor ratio. In our simple model, all agents are identical, so either everyone is at a corner or no one is. If instead we visualize a distribution of agents, by δ, by ϱ, and by the other parameters of their utility functions and the constraints they face, increasing government borrowing can be expected to make the zero gift constraint binding for an increasing number of agents. The same analysis can be applied to the study of the effects of the introduction of an unfunded social security retirement scheme in a world where previously only private saving provided for retirement. Subject to the qualifications mentioned earlier, such a scheme will reduce private saving in the short run and the capital-labour ratio in the long run.

Even in this most classical of models, the conclusion emerges inexorably that the way in which the government finances its real spending program can have major consequences for saving and capital formation. Debt neutrality is not a plausible theoretical proposition. Future research should concentrate on empirical assessments of the extent and nature of non-neutrality.

Barro, R. J. (1974) "Are Government Bonds Net Wealth?," Journal of Political Economy vol. 82, pp. 1095-1117.

Buiter, W. H. (1979) "Government Finance in an Overlapping Generations Model With Gifts and Bequests", in George M. von Furstenberg, ed., Social Security Versus Private Saving, Ballinger. Sobin, J. (1979) "Debt Neutrality: A Brief - and Tobin, J. (1979) "Debt Neutrality: A Brief Review of Doctrine and Evidence", in George M. von Furstenberg, ed., Social Security Versus Private Saving, Ballinger.

Carmichael, J. (1979) The Role of Government Financial Policy in Economic Growth, unpublished Ph. D. Thesis, Princeton University.

Diamond, P. A. (1965) "National Debt in a Neo-Classical Growth Model" American Economic Review, vol. 55, pp. 1126-1150.

Tobin, J. and Buiter, W. H. (1980) "Fiscal and Monetary Policies, Capital Formation and Economic Activity", in George N. von Furstenberg, ed., The Government and Capital Formation, Ballinger, forthcoming.

[^0]: * This paper was written while I was with the Financial Studies Division, Research Department, International Monetary Fund. It was part of a longer paper presented at the Eighth Money Study Group Oxford Seminar, Brasenose College, Oxford, September 26-28, 1979. I would like to thank George von Furstenberg for helpful comments. Early versions of this paper were presented in seminars at Harvard University and the University of Pennsylvania. I owe a great debt to Jeffrey Carmichael's work in this area.

[^1]: （28）$W_{t}^{*}=\max _{c_{t}^{1}, c_{t}^{2}, B_{t}} W_{t}=\max _{c_{t}^{1}, c_{t}^{2}, B_{t}}\left[u\left(c_{t}^{1}, c_{t}^{2}\right)+(1+\delta)^{-1} W_{t+1}^{*}\right] ; c_{t}^{1}, c_{t}^{2}, B_{t} \geqq 0$ ．

[^2]: ## $w_{\mathrm{t}}-\tau_{t}-c_{\mathrm{t}}^{1}-G_{\mathrm{t}}=d+k_{\mathrm{t}+1}(1+n)$

